397 research outputs found

    Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity

    Get PDF
    In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients

    Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)

    Get PDF
    Epitaxial FeRh(100) films (CsCl structure, ∌10 ML \sim 10\ ML\ thick), prepared {\it in-situ} on a W(100) single crystal substrate, have been investigated via valence band and core level photoemission. The presence of the temperature-induced, first-order, antiferromagnetic to ferromagnetic (AF→\rightarrow FM) transition in these films has been verified via linear dichroism in photoemission from the Fe 3pp levels. Core level spectra indicate a large moment on the Fe atom, practically unchanged in the FM and AF phases. Judging from the valence band spectra, the metamagnetic transition takes place without substantial modification of the electronic structure. In the FM phase, the spin-resolved spectra compare satisfactorily to the calculated spin-polarized bulk band structure.Comment: 7 pages, 5 figure

    Frequency Shifts in Natural Vibrations in Pantographic Metamaterials under Biaxial Tests

    Get PDF
    In this paper a 2D continuum model, thought as the homogenized limit of a microstructured pantographic sheet, is studied. The microstructure is characterized by two families of parallel fibers, whose deformation measures account for bending, elongation and relative rotation of the fibers. The deformation energy density of the homogenized model depends on both first and second gradients of the displacement. Modal analysis is performed in order to assess the peculiarities of the dynamic behavior of higher gradient models, and in particular the difference, with respect to classical laminae, in the dependence of the eigenfrequencies on the stiffness

    Adult patients with grown-up congenital heart disease: Lights and shadows

    Get PDF
    GUCH is acronym of grown-up congenital heart of patients who become adults after cardiac surgery. The history of this population is in progress (temporal perspective), and long-term post-surgical follow-up revealed the paradoxical meaning of correction of complex congenital heart disease, because surgery does not restore normality: It prolongs life, improves symptoms, functional capacity, but it is often associated with illness and peculiar needs. Not only survival but also health-related quality of life, which is strictly connected to clinical status, socio-economic situation, psychological conditions, cognitive functions, level of care with particular attention to gender differences. Currently the history of these patients is better known: A multidisciplinary team of cardiologists with specific training in congenital heart disease, psychologists, neurophysiologists, obstetricians, social workers, experts in human science can improve the possibilities of these patients to realize their effective and safe project of life

    Early identification of root rot disease by using hyperspectral reflectance: the case of pathosystem grapevine/Armillaria

    Get PDF
    Armillaria genus represents one of the most common causes of chronic root rot disease in woody plants. Prompt recognition of diseased plants is crucial to control the pathogen. However, the current disease detection methods are limited at a field scale. Therefore, an alternative approach is needed. In this study, we investigated the potential of hyperspectral techniques to identify fungi-infected vs. healthy plants of Vitis vinifera. We used the hyperspectral imaging sensor Specim-IQ to acquire leaves’ reflectance data of the Teroldego Rotaliano grapevine cultivar. We analyzed three different groups of plants: healthy, asymptomatic, and diseased. Highly significant differences were found in the near-infrared (NIR) spectral region with a decreasing pattern from healthy to diseased plants attributable to the leaf mesophyll changes. Asymptomatic plants emerged from the other groups due to a lower reflectance in the red edge spectrum (around 705 nm), ascribable to an accumulation of secondary metabolites involved in plant defense strategies. Further significant differences were observed in the wavelengths close to 550 nm in diseased vs. asymptomatic plants. We evaluated several machine learning paradigms to differentiate the plant groups. The Naïve Bayes (NB) algorithm, combined with the most discriminant variables among vegetation indices and spectral narrow bands, provided the best results with an overall accuracy of 90% and 75% in healthy vs. diseased and healthy vs. asymptomatic plants, respectively. To our knowledge, this study represents the first report on the possibility of using hyperspectral data for root rot disease diagnosis in woody plants. Although further validation studies are required, it appears that the spectral reflectance technique, possibly implemented on unmanned aerial vehicles (UAVs), could be a promising tool for a cost-effective, non-invasive method of Armillaria disease diagnosis and mapping in-field, contributing to a significant step forward in precision viticultur

    Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

    Full text link
    We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni81Fe19 / Cu / Co93Zr7 trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degree), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precession oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.Comment: 22 pages, 6 figures submitted to Physical Review

    Arachidonic Acid/ppara Enhancement of Ca2+-Regulated Exocytosis in Antral Mucous Cells of Guinea Pig

    Get PDF
    N is known to be the most limiting element for vegetation growth in temperate and boreal forests. The expected increases in global temperature are predicted to accelerate N mineralization, therefore incrementing N availability in the soil and affecting the soil C cycle as well. While there is an abundance of C data collected to fulfill the requirements for national GHG accounting, more limited information is available for soil N accumulation and storage in relation to forest categories and altitudinal gradients. The data collected by the second Italian National Forest Inventory, spanning a wide range of temperature and precipitation values (10° latitudinal range), represented a unique opportunity to calculate N content and C/N ratio of the different soil layers to a depth of 30 cm. Boosted Regression Tree (BRT) models were applied to investigate the main determinants of soil N distribution and C/N ratio. Forest category was shown to be the main explanatory factor of soil N variability in seven out of eight models, both for forest floor and mineral soil layers. Moreover latitude explained a larger share of variability than single climate variables. BRT models explained, on average, the 49% of the data variability, with the remaining fraction likely due to soil-related variables that were unaccounted for. Accurate estimations of N pools and their determinants in a climate change perspective are consequently required to predict the potential impact of their degradation on forest soil N pools

    Effect of pre-season training phase on anthropometric, hormonal and fitness parameters in young soccer players

    Get PDF
    The aims of the study were to investigate 1) the effect of 8 weeks of PSP training on anthropometrics, salivary hormones and fitness parameters in youth soccer players, 2) the correlations between fitness and hormonal parameters, and 3) the impact of the experience of the coach and his methodology of training on these parameters. Weight, height, BMI, pubertal development (PDS), salivary Cortisol (sC), salivary Testosterone (sT), salivary sDHEAS, intermittent tests (VO2max), and countermovement jump test (CMJ) modifications of 35 youth soccer players (age: 14±0 yrs; BMI: 20.8±1.8 k/m2 ) from two Italian clubs (“Lupa Frascati” -LF-; “Albalonga” -AL) were analysed. A significant (p<0.05) time by club effect was observed in sC (F(1,31) = 9.7, ES = 1.13), sT (F(1,31) = 4.2, ES = 0.74), CMJ (F(1,28) = 26.5, ES = 1.94), and VO2max (F(1,28) = 8.5, ES = 1.10). Statistical differences (p<0.05) in weight (F(1,32) = 25.5, ES = 0.11), sC (F(1,31) = 32.1, ES = 1.43), sT/sC ratio (F(1,31) = 10.1, ES = 0.97), sDHEAS/sC ratio (F(1,31) = 6.3, ES = 0.70), and VO2max (F(1,28) = 64.3, ES = 1.74) were found within time factor. Between clubs, differences (p<0.05) in sC (F(1,32) = 8.5, ES = 1.17), sT (F(1,31) = 4.2, ES = 0.74), CMJ (F(1,28) = 26.5, ES = 1.50), and VO2max (F(1,28) = 8.5, ES = 1.10) were found. CMJ was inversely correlated with sDHEAS (r = -0.38) before PSP, while Δ of CMJ showed significant correlations with Δ of sC (r = 0.43) and ΔVO2max was inversely correlated with ΔBMI (r = -0.54) and ΔsC (r = -0.37) in all subjects. Considering each single club, ΔVO2max showed correlations with ΔBMI (r = -0.45) in AL, while ΔCMJ showed correlations with ΔPDS (r = 0.72) in LF club. Since the PSP is often limited training time to simultaneously develop physical, technical and tactical qualities, an efficient method to distribute the training load is important in youth soccer players to increase the performance and to avoid injuries

    Implementation of Radio-Frequency Deflecting Devices for Comprehensive High-Energy Electron Beam Diagnosis

    Get PDF
    In next-generation light sources, high-brightness electron beams are used in a free-electron laser configuration to produce light for use by scientists and engineers in numerous fields of research. High-brightness beams are described for such light sources as having low transverse and longitudinal emittances, high peak currents, and low slice emittance and energy spread. The optimal generation and preservation of such high-brightness electron beams during the acceleration process and propagation to and through the photon-producing element is imperative to the quality and performance of the light source. To understand the electron beam's phase space in the accelerating section of a next-generation light source machine, we employed radio-frequency cavities operating in a deflecting mode in conjunction with a magnetic spectrometer and imaging system for both low (250 MeV) and high (1.2 GeV) electron energies. This high-resolution, high-energy system is an essential diagnostic for the optimization and control of the electron beam in the FERMI light source generating fully transversely and longitudinally coherent light in the VUV to soft x-ray wavelength regimes. This device is located at the end of the linear accelerator in order to provide the longitudinal phase space nearest to the entrance of the photon-producing beam-lines. Here, we describe the design, fabrication, characterization, commissioning, and operational implementation of this transverse deflecting cavity structure diagnostic system for the high-energy (1.2 GeV) regime

    Topological insulator in a Bi-Bi2_2Se3_3 infinitely adaptive superlattice phase

    Full text link
    We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi2_2Se3_3. The compound, based on Bi4_4Se3_3, is a 1:1 natural superlattice of alternating Bi2_2 layers and Bi2_2Se3_3 layers; the inclusion of S allows the growth of large crystals, with the formula Bi4_4Se2.6_{2.6}S0.4_{0.4}. The crystals cleave along the interfaces between the Bi2_2 and Bi2_2Se3_3 layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the Γ\Gamma point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.Comment: published version, 5 pages, 4 figure
    • 

    corecore