91 research outputs found

    Merging the Minnaert-k parameter with spectral unmixing to map forest heterogeneity with CHRIS/PROBA data

    Full text link
    The Compact High Resolution Imaging Spectrometer (CHRIS) mounted onboard the Project for Onboard Autonomy (PROBA) spacecraft is capable of sampling reflected radiation at five viewing angles over the visible and near-infrared regions of the solar spectrum with high spatial resolution. We combined the spectral domain with the angular domain of CHRIS data in order to map the surface heterogeneity of an Alpine coniferous forest during winter. In the spectral domain, linear spectral unmixing of the nadir image resulted in a canopy cover map. In the angular domain, pixelwise inversion of the Rahman-Pinty-Verstraete (RPV) model at a single wavelength at the red edge (722 nm) yielded a map of the Minnaert-k parameter that provided information on surface heterogeneity at a subpixel scale. However, the interpretation of the Minnaert-k parameter is not always straightforward because fully vegetated targets typically produce the same type of reflectance anisotropy as non-vegetated targets. Merging both maps resulted in a forest cover heterogeneity map, which contains more detailed information on canopy heterogeneity at the CHRIS subpixel scale than is possible to realize from a single-source optical data set

    An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

    Get PDF
    Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs) on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR), kernel ridge regression (KRR) and neural networks (NN). These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance). SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced RTMs, in which both consistent physical assumptions and data-driven machine learning algorithms live together

    Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data

    Get PDF
    River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous river floodplain. FLIGHT enables simulating top-of-canopy reflectance of vegetated surfaces either in turbid (e.g., grasslands) or in 3D (e.g., forests) mode. By inverting FLIGHT against CHRIS data, LAI was computed for three main classified vegetation types, ‘herbaceous’, ‘shrubs’ and ‘forest’, and for the CHRIS view zenith angles in nadir, backward (-36°) and forward (+36°) scatter direction. The -36° direction showed most LAI variability within the vegetation types and was best validated, closely followed by the nadir direction. The +36° direction led to poorest LAI retrievals. The class-based inversion process has been implemented into a GUI toolbox which would enable the river manager to generate LAI maps in a semiautomatic way

    Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling

    Get PDF
    The spaceborne imaging spectroscopy mission PRecursore IperSpettrale della Missione Applicativa (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new opportunities in many scientific domains, including precision farming and sustainable agriculture. This new Earth Observation (EO) data stream requires new-generation approaches for the estimation of important biophysical crop variables (BVs). In this framework, this study evaluated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content (CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were simulated from two images acquired by the airborne sensor HyPlant, during a campaign performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best performing ML algorithms, were used to define two relations with plant nitrogen uptake (PNU). CNC proved to be slightly more correlated to PNU than CCC (R-2 = 0.82 and R-2 = 0.80, respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. The results showed that the estimated PNU values are within the expected ranges, and the temporal trends are compatible with plant phenology stages

    A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation

    Get PDF
    Gaussian processes (GPs) have experienced tremendous success in biogeophysical parameter retrieval in the last few years. GPs constitute a solid Bayesian framework to consistently formulate many function approximation problems. This article reviews the main theoretical GP developments in the field, considering new algorithms that respect signal and noise characteristics, extract knowledge via automatic relevance kernels to yield feature rankings automatically, and allow applicability of associated uncertainty intervals to transport GP models in space and time that can be used to uncover causal relations between variables and can encode physically meaningful prior knowledge via radiative transfer model (RTM) emulation. The important issue of computational efficiency will also be addressed. These developments are illustrated in the field of geosciences and remote sensing at local and global scales through a set of illustrative examples. In particular, important problems for land, ocean, and atmosphere monitoring are considered, from accurately estimating oceanic chlorophyll content and pigments to retrieving vegetation properties from multi- and hyperspectral sensors as well as estimating atmospheric parameters (e.g., temperature, moisture, and ozone) from infrared sounders

    FLEX (Fluorescence Explorer) mission: Observation fluorescence as a new remote sensing technique to study the global terrestrial vegetation state

    Full text link
    Revista oficial de la Asociación Española de Teledetección[EN] FLEX (Fluorescence EXplorer) is a candidate for the 8th ESA’s Earth Explorer mission. Is the first space mission specifically designed for the estimation of vegetation fluorescence on a global scale. The mission is proposed to fly in tandem with the future ESA´s Sentinel-3 satellite. It is foreseen that the information obtained by Sentinel-3 will be supplemented with that provided by FLORIS (Fluorescence Imaging Spectrometer) onboard FLEX. FLORIS will measure the radiance between 500 and 800 nm with a bandwidth between 0.1 nm and 2 nm, providing images with a 150 km swath and 300 m pixel size. This information will allow a detailed monitoring of vegetation dynamics, by improving the methods for the estimation of classical biophysical parameters, and by introducing a new one: fluorescence. This paper presents the current status of FLEX mission in A/B1 phase and the different ongoing studies, campaigns and projects carried out in support of the FLEX mission.[ES] La misión FLEX (FLuorescence EXplorer) candidata del programa “Earth Explorer” de la ESA, es la primera misión espacial diseñada específicamente para la estimación de la fluorescencia de la vegetación a escala global. La propuesta incluye que FLEX vuele en tándem con el futuro Sentinel-3 de la ESA. La información proporcionada por los sensores de Sentinel-3 será complementada con la proporcionada por FLORIS (FLuORescence Imaging Spectrometer) a bordo de FLEX, que medirá la radiancia entre 500 y 800 nm con una anchura de bandas entre 0,1 nm y 2 nm, proporcionando imágenes con un ancho de barrido de 150 km y tamaño de pixel de 300 m. Esta información permitirá el estudio detallado de la vegetación con métodos mejorados para la estimación de parámetros biofísicos clásicos y la introducción de nuevos parámetros biofísicos como la fluorescencia. En este trabajo se muestra el estado actual de la misión FLEX en fase A/B1 y de los distintos estudios, campañas y proyectos que se están llevando a cabo en torno a la misión FLEX.Este trabajo ha sido posible gracias al Proyecto AYA2010-21432-C02-01 (BIOFLEX) subvencionado por el Ministerio de Economía y Competitividad de España.Moreno, J.; Alonso, L.; Delegido, J.; Rivera, J.; Ruiz-Verdú, A.; Sabater, N.; Tenjo, C.... (2014). Misión FLEX (Fluorescence Explorer): Observación de la fluorescencia por teledetección como nueva técnica de estudio del estado de la vegetación terrestre a escala global. Revista de Teledetección. (41):111-119. https://doi.org/10.4995/raet.2014.2296SWORD11111941Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., & Moreno, J. (2009). Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10), 2037-2051. doi:10.1016/j.rse.2009.05.003Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences, 6(12), 3109-3129. doi:10.5194/bg-6-3109-200
    corecore