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Abstract: River floodplains in the Netherlands serve as water storage areas, while they 
also have the function of nature rehabilitation areas. Floodplain vegetation is therefore 
subject to natural processes of vegetation succession. At the same time, vegetation 
encroachment obstructs the water flow into the floodplains and increases the flood risk for 
the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify 
vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. 
In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy 
reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous 
river floodplain. FLIGHT enables simulating top-of-canopy reflectance of vegetated 
surfaces either in turbid (e.g., grasslands) or in 3D (e.g., forests) mode. By inverting 
FLIGHT against CHRIS data, LAI was computed for three main classified vegetation 
types, ‘herbaceous’, ‘shrubs’ and ‘forest’, and for the CHRIS view zenith angles in nadir, 
backward (−36°) and forward (+36°) scatter direction. The −36° direction showed most 
LAI variability within the vegetation types and was best validated, closely followed by the 
nadir direction. The +36° direction led to poorest LAI retrievals. The class-based inversion 
process has been implemented into a GUI toolbox which would enable the river manager to 
generate LAI maps in a semiautomatic way. 
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1. Introduction 

Climate change is expected to have a large impact on water resources and flooding risks of the main 
rivers in the Netherlands [1]. General circulation models applied on the Rhine river basin predict 
higher winter discharge and peak flows as a result of increased winter precipitation and earlier  
snow-melt in the Alps [2,3]. During the 20th century, measures for improvement of river navigation, as 
well as agricultural development have caused the Rhine to lose its natural meanders while significant 
parts of the floodplain have been affected by urban development [4,5]. As a result, the capability of the 
river system to accommodate peak flows has been reduced which leads to increased flooding risks for 
the floodplains and its hinterland [6]. 

During the last decades, the water discharge capacity of the river system in the Netherlands has 
been increased by lowering and widening of the floodplains, removal of hydraulic obstacles in the 
floodplains and by excavation of secondary channels [7,8]. Concomitantly, these newly developed 
river floodplains also serve as nature restoration areas, where succession of vegetation leads to highly 
valued ecosystems [9]. However, floodplain vegetation causes resistance to the water flow within the 
river floodplains [10]. Because of the complex structure of floodplain vegetation and the accumulation 
of material caused by sedimentation processes, flood flow velocities decrease and the water surface 
increases during flooding events [11]. For assessment of current and future river management 
scenarios in low land rivers like the Rhine in the Netherlands, information on the spatially complex 
structure and density of floodplain vegetation is a key issue [12]. 

To intervene with the spontaneous vegetation succession, the concept of Cyclic Floodplain 
Rejuvenation (CFR) has been introduced for management of the Rhine river system [13]. CFR implies 
periodic anthropogenic disturbance of floodplain ecosystems through removal of climax vegetation to 
create more space for water. To support this approach, regular monitoring of the spatial distribution 
and structure of floodplain vegetation is required for estimating the flow resistance within the 
floodplain. Flow resistance indicates to what extent the water flow is obstructed and is directly related 
to vegetation height and density, rigidity of the stems and the presence of leaves [14–18]. For the rivers 
Rhine and Meuse in the Netherlands, ecotope maps are used for determining flow resistance values of 
the vegetation, resulting in one roughness value per ecotope object. Currently, ecotope maps are based 
on digital false colour aerial photographs and ancillary in situ data on flood duration, management, 
water depth and morphodynamics [19]. However these techniques are time-consuming and no 
information on spatial variability of vegetation density within the ecotopes is provided.  

Alternatively, satellite based Earth observation (EO) can play a major role by providing a 
quantifiable, spatially-explicit and replicable technique for monitoring and assessing the magnitude of 
floodplain vegetation density [20,21]. With optical EO data, vegetation properties can be characterised 
into a few essential structural variables that quantify vegetation density such as leaf area index (LAI), 
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defined as the total of one-sided area of leaves per area (m2/m2) [22].  Particularly in fully vegetated 
floodplains LAI can be considered as the main parameter that quantifies vegetation density. 
Consequently, LAI has been proposed to be implemented in flow resistance calculation schemes [18]. 
The latter author linked LAI with cross-sectional flow velocity, flow depth and plant height to 
calculate the friction factor for flow inside leafy and woody vegetation on floodplains and wetlands. 
Implementing spatially-explicit LAI estimates in flow resistance calculation schemes may therefore 
bypass the need for many elaborative field measurements [20,21]. 

The retrieval of LAI from EO data is often based on empirical relationships between spectral 
vegetation indices and ground-based measurements (e.g., [23–25]). These relationships work well 
under particular viewing and illumination geometry and for specific vegetation phenology, but they 
tend to produce inaccurate results when applied over a broad range of land cover types and optical and 
geometric conditions encountered in satellite images [26]. Canopy reflectance is the result of several 
intricately coupled physical processes and it is therefore difficult to estimate the influence of a single 
parameter from experimental data (e.g., [27]). Contrary to empirical approaches, radiative transfer 
(RT) models take the physical features of a plant canopy into account and are therefore more realistic 
in describing the interaction of solar radiation with vegetation components. A canopy RT model 
describes the transfer and interactions of solar radiation inside such a canopy and thus provides an 
explicit link between the structural characteristics of vegetation scattering elements and the canopy 
reflectance [28]. In these RT models the spectral signal is a function of canopy geometry, defined by 
canopy structural variables such as LAI, leaf angle distribution and fractional vegetation cover, optical 
leaf and soil properties, illumination and viewing geometry. LAI is a key variable in describing the 
density of the scattering elements. In turn, these biophysical variables can be extracted from RT 
models through model inversion (e.g., [29]). 

Apart from the expected enhancement of the physical RT modelling approach for retrieval 
accuracy, additional gains are to be expected with the use of pointable sensors. Various studies 
demonstrated that canopy reflectance measurements acquired under different observation angles can 
yield unique information pertaining to vegetation structure [30–39]. The presence of shadows in the 
canopy forms an important argument for exploring pointable data because the shadowing effect in 
vegetated surfaces will result in enhanced reflectance in the backscatter direction and reduced 
reflectance in the forward scatter direction of the principal plane [40]. Therefore, the combined use of 
RT methods with pointable imaging spectroscopy data may lead to a more robust approach to map the 
complex floodplain vegetation structure and density from space. 

The ESA’s Compact High Resolution Imaging Spectrometer (CHRIS) on board the Project for On 
Board Autonomy (PROBA) satellite is a pointable, imaging spectroscopy sensor that was designed as a 
technology demonstrator [34]. CHRIS is capable of measuring reflected radiation over the visible and 
near-infrared (NIR) spectra from 406 to 1,035 nm from five different viewing angles (nadir, ±36°, 
±55°) by pointing five times to the same target during a single overpass. It can operate in different 
modes, balancing the number of spectral bands, site of the covered area and spatial resolution because 
of on-board memory storage reasons. However, being a technology demonstrator, CHRIS does not 
acquire data on a routine basis but images can be acquired on request. The spacecraft is essentially 
designed for scientific applications, amongst others for developing new vegetation monitoring 
strategies. For instance, several studies demonstrated that angular CHRIS data in combination with a 
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RT modelling approach hold promises to monitor LAI over agricultural fields [26,41,42]. Nonetheless, 
research on quantifying LAI over heterogeneous floodplain ecosystems, taking into account different 
vegetation types such as species-rich grasslands grading towards shrub and tree encroachments, have 
rarely garnered attention in the scientific literature.  

In this study we aim at characterizing the density variable LAI of a spatially and spectrally complex 
river floodplain ecosystem using angular CHRIS data. The objective is threefold: (i) to develop a RT 
model inversion methodology for physically-based mapping of LAI of several vegetation types in a 
river floodplain ecosystem using pointable CHRIS data (Mode 3: 18 bands with 17 m of spatial 
resolution); (ii) to explore the added value of the use of the different viewing angles (nadir, ±36°) in 
the applied methodology; and (iii) to assess the opportunities to apply the methodology developed for a 
local floodplain to a complete river section at the regional scale. 

2. Materials and Methods 

2.1. Study Site 

The study site is the floodplain Millingerwaard (51°84′N, 5°99′E) along the river Waal, which is the 
main branch of the river Rhine in the Netherlands (Figure 1). Millingerwaard (700 ha) is one of the 
main floodplains of the nature reserve Gelderse Poort, with a total surface area of 6700 hectare. Within 
the Netherlands, the Gelderse Poort serves as important riparian corridor within the Natura 2000 
network of the European Union. Before 1990, Millingerwaard was used as an agricultural area with 
intensively managed grassland and arable crops (e.g., maize). Starting from 1990, agricultural 
management was gradually reduced and a nature rehabilitation plan was started. By digging out clay 
deposits from the topsoil, the old patterns of side streams, natural levees and isles were reconstructed 
in the landscape. Floodplain vegetation was going through natural succession and a regime of grazing 
by cattle and horses in low densities was introduced. Current vegetation of the Millingerwaard 
floodplain consists of mixed patches and ecotones, i.e., transitions between communities with a 
dominance of grass, herbaceous vegetation, dwarf and tall shrubs, and a large softwood forest [43]. 
Softwood forest in Millingerwaard is dominated by willow trees (Salix fragilis and Salix alba). The 
forest canopy has an open structure with dense undergrowth (Urtica dioica (stinging nettle), Arctium 
lappa (greater burdock), Galium aparine (cleavers)) and open water bodies due to the low elevation 
and high ground water levels. The non-forest vegetation is characterized by a heterogeneous patchy 
structure of different vegetation succession stages. Dominant species are Urtica dioica, Calamagrostis 
epigejos (wood small-reed), and Rubus caesius (dewberries). Finally, a limited number of parcels is 
still in agricultural use. Vegetation types present in Millingerwaard are representative for the 
vegetation succession stages of the other floodplains within the Gelderse Poort nature reserve. At this 
moment, the surface area of agricultural land in the complete Gelderse Poort is relatively high 
compared to that of the Millingerwaard, however, this will change over the coming decade as 
agricultural management will be changed to a nature management regime.  
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Figure 1. The study area which is located in the east of the Netherlands, indicated on the 
CHRIS nadir image in true colour band composition (R: 675.2 nm, G: 551.7 nm, B: 490.5 nm). 
The red circle represents the river floodplains of Millingerwaard. The black outlined river 
area overlain on the CHRIS nadir image represents the nature reserve the Gelderse Poort. 

 

2.2. CHRIS Data 

During the same PROBA overpass five pointable CHRIS images over the Millingerwaard and a 
large part of the Gelderse Poort (Figure 1) were quasi-simultaneously acquired on 6 September 2005 in 
Mode 3 under cloud-free conditions around solar noon. Mode 3 is appropriate for vegetation structure 
mapping as it is characterized by both a high spatial (~17 m) and high spectral resolution with 18 
bands measuring in the visible and NIR wavelengths from 400 to 1,050 nm, thereby covering a region 
of 13 by 13 km (full swath) [34] (Table 1). CHRIS images were acquired at nadir, ±36°, ±55° nominal 
viewing zenith angles (VZA) and are named as such hereafter. The actual position of the sensor during 
the satellite overpass is shown in the polar plot of Figure 2. Negative viewing angles represent 
measurements in the backscatter direction, where most sunlit canopy is viewed by the sensor; positive 
viewing angles represent measurements in the forward scatter direction, where most shadowing effects 
are present. The solar zenith angle during acquisition was 46°. For the purpose of this research, the 
images of VZA nadir and ±36° were used, because the ±55° images faced a reduction in the common 
area viewed by the sensor due to a misregistration in the pointing to the target. 

Automatic image registration of the CHRIS nadir and ±36° images was performed according to the 
method of [44] to reference the three separate images to each other. Geometric correction of these 
three images was carried out with use of 34 ground control points (GCP’s) which were collected from 
a high spatial resolution (0.5 m) aerial photograph from early spring 2006. Because the CHRIS images 
were already referenced to each other, the GCP’s were taken from the nadir image only and also 
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applied to the ±36° images. A 2nd order polynomial model with nearest neighbourhood resampling 
technique was used for geometric correction of the three images which resulted in a control point error 
of 0.31 pixels. Atmospheric correction of the images was performed according to the method described 
by [45] using the CHRIS-Box software developed as a plug-in for the BEAM toolbox (Brockmann 
Consult, http://www.brockmann-consult.de/beam). 

Table 1. CHRIS specifications for Land Mode 3; general information and centre 
wavelength (CHRISmid) and full-width-half-maximum (FWHM). 

Sampling Image Area View Angles Spectral Bands Spectral Range 
~ 17 m @ 556 km 

altitude 
13 × 13 km 

(744 × 748 pixels) 
5 nominal angles @ 

±55°, ±36°, 0° 
18 bands with  
6–33 nm width 

438–1,035 nm 

 
CHRISmid 

(nm) 442 490 530 551 570 631 661 672 697 703 709 742 748 781 872 895 905 1,019 

FWHM 
(nm) 9 9 9 10 8 9 11 11 6 6 6 7 7 15 18 10 10 33 

Figure 2. Polar plot showing the actual positions of the five angular CHRIS images during 
acquisition on 6 September 2005. The solar zenith angle was 46°, the solar azimuth angle 
170°. 

 

2.3. Land Cover Classification of CHRIS nadir Image 

Prior to LAI retrieval in canopies comprised of a heterogeneous mix of vegetation types, these 
vegetation types need to be identified so that the RT model can be parameterized accordingly. By 
using information from the three observation angles, a map was created that included eight major land 
cover classes (Table 2). The vegetated classes consisted of ‘bare soil and pioneer communities’, 
‘grasses and herbaceous vegetation’, ‘higher herbaceous vegetation’, ‘shrubs’, and ‘forest’. These 
classes are in accordance to the class definitions used by [11] that serve as a minimum set to estimate 
flow resistance for river management purposes. The class ‘forest’ represents the areas that consist of 
pixels with tree cover. The classes ‘water’, ‘build up area’, and ‘arable land’ were added to be able to 
classify the whole CHRIS image. A summary of all classes and their main characteristics is listed in 
Table 2, the undertaken steps are shortly explained below.  
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Table 2. Classes used for classification of the CHRIS image. 

 Class Name Class Characteristics 
1 Bare soil and pioneer vegetation mainly sand 
2 Grasses and low herbaceous vegetation vegetation < 1 m 
3 Higher herbaceous vegetation vegetation between 1 m and 2 m 
4 Shrubs shrubs and trees < 5 m 
5 Forest trees > 5 m 
6 Water water 
7 Build up streets, houses 
8 Arable land maize 

Maximum likelihood (ML) classification was performed on the CHRIS nadir image to classify the 
identified land cover classes within the boundaries of Millingerwaard (Figure 1). First, a training data 
set was defined on which the classification was based. Regions of interest (ROIs) were selected as 
training data for each land cover class. Field knowledge and aerial photographs of early spring 2006 
were used as reference for selecting ROIs. The ROIs consisted of a combination of 10 polygons for 
each class which were selected with a minimum number of more than 51 pixels. The selection of 
ROIs was evaluated by computing ROI separability based on the transformed divergence and  
Jeffries-Matusita Distance of the whole visible and NIR (VNIR) spectrum from the CHRIS nadir 
image. The separability values showed that the pair of ‘higher herbaceous vegetation’ and ‘grasses and 
low herbaceous vegetation’ had highly comparable spectral characteristics.  

The aerial photographs of 2006 were used as basis for selection of data-points to validate the 
classification result of the major land cover classes. A set of twenty random sample points was selected 
per class resulting in the selection of 160 points in total. The distance between two points was set to a 
minimum of 100 m to prevent choosing points located too close to each other. Finally, classification 
accuracies and the kappa statistic were calculated for the classified land cover map. 

2.4. FLIGHT Model Inversion to Derive LAI  

Among RT models, FLIGHT (Forest LIGHT interaction model) is a three dimensional (3D) ray 
tracing model based on Monte Carlo simulations of photon transport. FLIGHT simulates photon 
trajectories, starting from a solar source, through successive interactions with the vegetation, to a 
predetermined sensor viewing angle [46]. The model incorporates the probability of free path, absorption 
and scattering of photons and accounts for shadowing effect, crown overlapping and multiple scattering 
between crowns. Within the crown, photons are scattered based on probability density functions. The 
individual photons are followed until they are either absorbed or exited by the canopy. The model 
outcome is scene top-of-canopy bi-directional reflectance (BRF) values, the result of a unique stand 
configuration, solar illumination direction, surface reflection direction and spectral wavelength (λ). 
FLIGHT can be operated either in 1D or 3D mode. In 1D mode, the vegetation canopy is modelled as 
turbid medium, which can be seen as a layer that contains a mix of different canopy elements which 
represent the vegetation density characteristics. Vegetation density of a scene is exclusively controlled by 
LAI. In 3D mode, the vegetation canopy is modelled as a 3D representation of tree crowns, which are 
idealized by volumetric primitives of defined shapes with associated shadowing effects. Vegetation 
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density within the volumetric primitives is controlled by LAI and the density of the primitives within a 
scene is controlled by fractional vegetation cover. This 1D/3D flexibility enables to employ a better 
representation of patchy landscapes, i.e., homogeneous areas can be simulated in 1D mode while 
heterogeneous areas (e.g., ‘forest’) can be simulated in 3D mode. In turn, inversion of the model against 
measured reflectance data allows retrievals of LAI at the sensor sub-pixel scale. 

The vegetation classes used in the classification were simplified to form a base map for the  
class-based model inversion. From the five vegetation classes ‘bare soil and pioneer vegetation’; 
‘grasses and low herbaceous vegetation’; ‘higher herbaceous vegetation’; ‘shrubs’; and ‘forest’, the 
vegetation class ‘bare soil and pioneer vegetation’ was omitted from further analysis because this class 
does not have a complex structure (i.e., characterized by sparsely distributed, low-growing grassland 
species) thus the influence on the flow resistance in case of a flooding can be neglected. The two 
classes ‘grasses and low herbaceous vegetation’ and ‘higher herbaceous vegetation’ which showed a 
relatively low separability were aggregated into one class, further referred to ‘herbaceous’ vegetation. 
This led to three distinct vegetation classes ‘herbaceous’, ‘shrubs’ and ‘forest’, for parameterization of 
FLIGHT. The ‘herbaceous’ and ‘shrubs’ classes were parameterized in 1D mode because of its 
continuous horizontal distribution, while ‘forest’ was parameterized in 3D mode. For each vegetation 
class, model parameters; leaf, woody and background spectra; and LAI variable ranges were defined 
and fed into FLIGHT (Table 3). Vegetation model parameters were defined based on field measurements 
and ranges of variables were defined based on findings in literature [47–49]. Leaf reflectance and 
transmittance spectra were measured with an ASD field spectrometer during a field campaign from 28 
July till 2 August in 2004. Also tree geometry indicators were measured and are listed in table 3. We 
assumed that changes in leaf structure and composition of willow trees (>20 years old), as present in 
Millingerwaard, are small within a period of one year, and that therefore the field measurements match 
the reflectance spectra of leaves of willow trees in 2005. Additional reflectance spectra of various bark 
and background types were collected in April 2009 with an ASD field spectrometer. The spectra were 
resampled to the band settings of the CHRIS sensor. 

Model inversion is required in order to retrieve vegetation characteristics from reflectance data 
through physically based models. Inversion was accomplished by means of a lookup-table (LUT) 
approach. The LUT provides a simple way of the inversion of a radiative transfer model and also 
reduces the computational demand compared to the traditional optimization approach [50]. For each 
VZA and each vegetation class a LUT containing simulated reflectance data was built by means of 
combining the canopy variables following the steps as provided in Table 2. Given the LUT input 
parameters, FLIGHT subsequently computed the BRF for 18 spectral bands corresponding to the band 
settings of the CHRIS sensor. The inversion itself was done by first calculating the root mean square 
errors (RMSE) between each measured reflectance spectrum from the CHRIS nadir and ±36° images 
and all simulated BRF spectra as stored in the LUT. Because multiple variable combinations may lead 
to the same spectra (the problem of ill-posedness), the solution applied here is the average of variable 
combinations found within less than 10% of the lowest RMSE value. The 10% threshold agrees with 
several studies that attempted to optimize inversion (e.g., [51–53]). As such, LAI values were 
pixelwise retrieved per vegetation class for the nadir and the ±36° VZAs. Additionally, RMSE 
residuals were provided to obtain information about the performance of the retrievals. The residuals 
reveal the closeness of actual spectral observations to that of the simulated spectra in the inversion; 
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lower residual means a better match. This enabled to compare differences in retrieval performances 
between angles. 

Table 3. FLIGHT model parameters and variables, and input spectra. Fcover: fractional 
vegetation cover, LAI: leaf area index, PV: photosynthetic vegetation, 1D: 1dimensional, 
3D: three dimensional; DBH: diameter breast height. Details about the FLIGHT parameters 
can be found in [46]. 

Class Name 
Input Spectra 

Leaf Background Bark 
Herbaceous Calamagrostis epigejos 0.95*forest background + 0.05*sandy soil  
Shrubs Salix alba average (water, grass & forest background) Salix alba 
Forest Salix alba forest background Salix alba 

 

Class Name 
Variables  Fixed Parameters 

Fcover (%) LAI (m²/m²) PV (%) Scene Leaf Size (m) 

Herbaceous 20–100; step: 2 0.2–10; step: 0.1 until 5; step: 0.5 until 10 100 1D 0.027 
Shrubs 20–100; step: 2 0.2–10; step: 0.1 until 5; step: 0.5 until 10 70 1D 0.02 
Forest 20–100; step: 2 0.2–10; step: 0.1 until 5; step: 0.5 until 10 70 3D 0.02 

Fixed Parameters Tree Geometry (m) 
Crown shape ellipsoid 
Crown radius 3 
Centre to top distance 3 
Height to first branch:     
Min: 

1 

Max: 4 
Trunk DBH 0.4 

An essential step in asserting the appropriateness of optical EO measurements to partake in the 
characterization of vegetation density variables is to seek evidence in the validity of the variables. 
Validation of LAI measurements were derived from a ground sampling campaign which was carried 
out in first two weeks of august 2004 and 2005 in the Millingerwaard [54]. The 2004 dataset consisted 
of 13 sample plots of 20 × 20 m in the forest area, which were selected following a random sampling 
scheme with a minimum of 20 m distance from each other. Each plot was set up according to the 
VALERI (Validation of Land European Remote Sensing Instruments) protocol [55] and consisted of 
12 measurement points per plot. At each point within the plot one measurement in 180° upward 
direction and one measurement in 180° downward direction were taken with the hemispherical camera. 
The hemispherical photographs were processed with use of the neural network based software 
CAN_EYE to calculate the gap fraction and to derive the clumping factor and true LAI values [56]. 
The 2005 validation dataset acquired in the last week of June consisted of 16 sample plots of 20 × 20 m 
with more or less homogeneous vegetation cover in ‘herbaceous’, ‘shrubs’ and ‘forest’ vegetation. The 
sample plots were also set up according to the VALERI protocol. The effective LAI was estimated 
with use of hemispherical photography and subsequently corrected into true LAI values with use of the 
average clumping index per plant-functional type from TRAC (Tracing Radiation and Architecture of 
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Canopies) measurements and woody-to-total area ratio from the hemispherical photographs [57]. Thus 
in total 29 LAI validation points were collected.  

2.5. Applying the Method to the Larger Floodplain Area 

The final step comprised applying the methodology to all floodplains within the complete river 
section of the Gelderse Poort nature reserve (Figure 1). RT models are not limited to site or  
sensor-specific dependencies but it requires that vegetation optical properties are comparable with the 
calibration area. The same LUT can then be applied to larger floodplain areas without having to 
compromise on the retrieval quality. To do so, first a land cover classification was made, based on the 
same training dataset which was used for the Millingerwaard. FLIGHT model inversion was 
subsequently applied per vegetation class for the Gelderse Poort to derive LAI values. Because of the 
class-based inversion approach and the broad range of simulations present in the LUT for each 
vegetation class, covering a large variety of plausible canopies, no additional adjustments had to be 
made to apply the same methodology to the larger floodplain area. Finally, in view of applying the 
class-based model inversion approach to images from any imaging spectrometer, the whole 
methodology has been implemented into a Matlab-based graphical user interface (GUI) toolbox called 
ARTMO (Automated Radiative Transfer Models Operator) [58]. Hence, with ARTMO LAI maps can 
be obtained in a semiautomatic way thereby taking the distinct nature of different land cover classes 
into account. 

3. Results 

3.1. Classification 

The classified land cover map of the CHRIS nadir image for the Millingerwaard is presented in 
Figure 3 and has an overall accuracy of 68% and a kappa coefficient of 0.56 (Table 4). Notably, most 
misclassifications occurred between the ‘grasses and low herbaceous vegetation’ and the ‘higher 
herbaceous vegetation’, because the spectral characteristics of these classes have similarities and 
mixing of different vegetation types occurred in the pixels (~17 m) of the CHRIS image. When 
merging these two classes, the overall accuracy improved to 73%. The largest part of Millingerwaard 
was covered by grasses and (low and higher) herbaceous vegetation. Some parts of the river 
floodplains have recently been excavated and consisted of bare soil. Shrubs and softwood forest 
surrounded the lakes. Some pieces of land in the eastern part with a rectangular shape and 
homogeneous land cover represented arable land and agricultural grassland. The remaining part of the 
area had a heterogeneous land cover with transitions between land cover types on the pixel-level which 
is characteristic for a natural river floodplain ecosystem. 

Table 4. Accuracy matrix of CHRIS nadir maximum likelihood classification. 

Ground Truth Bare soil Grass & Low Herbaceous Higher Herbaceous Shrubs Forest Agricultural Water Build up 

Bare soil 11 1 2 3 

Grass & low herbaceous 3 19 6 5 1 3 1 1 

Higher herbaceous 1 8 1 1 
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Table 4. Cont. 

Ground Truth Bare soil Grass & Low Herbaceous Higher Herbaceous Shrubs Forest Agricultural Water Build up 

Shrubs 2 9 1 

Forest 2 4 16 1 3 

Agricultural 1 17 1 

Water 3 1 1 18 

Build up 2 11 

Figure 3. Maximum likelihood classification result of the CHRIS nadir image of the 
(a) Gelderse Poort and (b) Millingerwaard (indicated with the black square) into major 
land cover types. 

 

3.2. Vegetation Class Based Angular LAI Retrievals 

LAI maps were generated through model inversion for the vegetation cover classes of ‘herbaceous’, 
‘shrub’ and ‘forest’ vegetation within the Millingerwaard study site and were combined into a single 
map for each viewing direction (Figure 4 (left)). White parts in the maps represent areas that were not 
included in one of the three vegetation classes. Large variation in retrieved LAI values could be 
observed within all the three classes in the river floodplain area, which reinforces the significance of 
quantifying density at the pixel level. Largest LAI variability was obtained in the −36° VZA, closely 
followed by the nadir direction, whereas the variation of the inverted values was considerably lower 
for +36° VZA. Spurious high LAI values between 8 and 9 occurred in several fields and along the 
dikes. Due to their rectangular shape and homogeneous land cover (Figure 3) it could be deduced that 

(a) Gelderse Poort 

(b) Millingerwaard 
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these dense vegetated areas are probably related to intensively managed agricultural fields (mainly 
maize fields). Similar orders of magnitude were observed along the dike in the south of 
Millingerwaard, also due to agricultural use. Since the ‘herbaceous’ vegetation class was not 
parameterized for this vegetation type these agricultural areas are excluded in further analysis. The 
generated histograms show the LAI distribution of the river floodplain for the three viewing angles 
(Figure 4 (right)).  

Figure 4. LAI maps (left) and derived histograms for LAI<8.5 (right) of Millingerwaard 
for the backward scattering direction (−36° VZA) (top), the nadir direction (middle) and the 
forward scattering direction (+36° VZA) (down), derived with FLIGHT model inversion. 

  

  
   

From these histograms it can be observed that nadir failed to identify pixels with very low LAI (<1), 
which are present over the sandy river banks. In case of −36° VZA, LAI values ranged between 0.3 
and 6 for the ‘shrubs’ and ‘herbaceous’ areas. Large variations were obtained within the ‘herbaceous’ 
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vegetation class west of the lakes. Peaks in LAI indicated the spatial pattern of shrub encroachment, 
where the highest values belonged to the fast growing shrub Crataegus monogyna (hawthorn). Also 
the shrub class around the lakes showed great variation in LAI. This concerned mainly Salix (willow) 
species which vary in density and height. The ‘forest’ class, which was simulated in 3D, yielded LAI 
values within a narrow range, between 5 and 7. 

When validating the LAI results, it can be observed from the scatter plots (Figure 5) that the nadir 
and −36° VZA performed alike, with a somewhat better RMSE accuracy for −36° VZA. The RMSE 
accuracies were 1.05 for −36° VZA and 1.23 for nadir respectively. Overall, for both viewing angles 
the retrieved LAI values were overall closely positioned to the 1:1-line. The retrieved LAI values fell 
within the same range between 2 and 7 as the LAI values obtained with the hemispherical camera 
(Figure 5). Though, it has to be noted that over the pixels labelled as ‘forest’ hardly variation in LAI 
was detected. Conversely, the +36° VZA led to considerably poorer accuracies (RMSE: 2.63), 
suggesting that this viewing angle leads to suboptimal retrievals. 

Figure 5. Mean validation results and standard deviation of the estimated LAI obtained 
with FLIGHT model inversion, plotted against the measured LAI values obtained with the 
hemispherical camera for the backward scattering direction (−36° VZA), the nadir 
direction and the forward scattering direction (+36° VZA). 

 
Another way of evaluating the performances of the LAI retrievals is inspecting the RMSE residuals, 

which were mapped in Figure 6 (left). Although no validation per se, these RMSE maps can give us a 
better spatial understanding of the success of the inversion process. When comparing the viewing 
angles it can be noted that nadir and −36° VZAs performed alike, while forward scatter +36° VZA had 
more difficulty with the inversion. The latter not only led to overall poorer residuals but also delivered 
considerably more patches with very poor retrievals (dark red spots). This implies that some degree of 
mismatch between actual spectra and the simulated spectra took place. It suggests that either FLIGHT 
was not well able to represent the complex shadowing effects in this direction or that a more accurate 
atmospheric correction regime is needed at this angle. The RMSE maps also suggested that there were 
no indications that one vegetation class performed worse than the other classes; the image was 
consistently inverted with some patches (dark red spots) of poorer residuals. These patches typically 
emerged on landscape edges or on areas with high LAI retrievals. Finally, when looking closer to the 
residuals at nadir and −36°, despite some patches of poor retrievals, −36° VZA showed slightly better 
performances throughout the whole image. This can also be observed in the histograms of the residual 
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maps (Figure 6 (right)), where the −36° VZA led to considerably more pixels with very low RMSE 
values (very left part of histogram).  

Figure 6. Maps of minimum RMSEs for LAI retrievals (left) and derived histograms for 
<8.5 (right) of Millingerwaard for the backward scattering direction (−36° VZA) (top), the 
nadir direction (middle) and the forward scattering direction (+36° VZA) (down), derived 
with FLIGHT model inversion. 

3.2. LAI Mapping of the Larger Floodplain ‘Gelderse Poort’ 

To demonstrate the portability of the class-based model inversion, the complete methodology was 
applied to the larger floodplain area of the Gelderse Poort nature reserve. This resulted first in a land 
cover map (Figure 3) and subsequently LAI maps for the three viewing angles for this area. The land 
cover map reveals that most natural vegetation is present in the southern part of the land cover map. 
The Millingerwaard floodplain is located here, but the landscape is also characterized by patches of 
semi-natural grasslands, shrubs, bare soil and lakes and agricultural fields. To the North, the landscape 
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is dominated by agricultural crops and grasslands. These parts have not yet been subject to the natural 
management regime. The map formed the basis for the class-based LAI retrieval. Figure 7 shows as an 
example of the LAI map for the −36° VZA, the viewing angle that was best validated and where most 
variability was perceived. Generated LAI values over the larger floodplain were within the same range 
as over the Millingerwaard. Large LAI variability can be observed in the more natural areas, especially 
in the South and South-eastern part of the map, but also in some parts along the river in the centre and 
North of the map. More northwards, where more agricultural fields were present, areas of high LAI 
values suggest that these parcels consisted of homogeneous agricultural vegetation cover, such as 
mature maize fields. Ideally, since these areas probably present a LAI overestimation, these agricultural 
areas should have been parameterized as an independent LUT class. 

Figure 7. LAI map and histogram for the backward scattering direction (−36° VZA), 
derived with FLIGHT model inversion after applying to the Gelderse Poort area. 

 

4. Discussion 

4.1. Vegetation Density Characterization 

LAI is one of the main biophysical variables that can be derived from space [22]. At the same time, 
LAI can be considered as an important proxy of vegetation density, which holds promise for the 
calculation of flow resistance of river floodplains [18]. Specifically the vegetated areas with high LAI 
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have potential to generate a high accumulation of biomass, and are most critical for the estimation of 
the hydraulic conductivity of the floodplain. For these areas removal of vegetation under the Cyclic 
Floodplain Regime could be considered [13]. Moreover, deriving LAI from pointable observations 
may be beneficial compared to conventional nadir observation because of the ability of controlling the 
contribution of shadowing effects. For the purpose of quantifying and monitoring LAI over 
heterogeneous floodplains, we have developed a semiautomatic retrieval strategy on the basis inverting 
the ray tracing model FLIGHT. The retrieval strategy has been made adjustable to different vegetation 
classes to account for heterogeneous landscapes and has been implemented into a GUI toolbox called 
ARTMO [58]. As such, we applied the inversion strategy to nadir and ±36° CHRIS images. 

Our results show a prominent spatial and angular variability in LAI values within the studied 
floodplain across the three pointable CHRIS images (Figure 4). For instance, it appeared that the −36° 
VZA demonstrated largest variability and best retrieval performances. Particularly subtle LAI 
variations in case of low LAI were best detected in this viewing configuration (Figure 4 (top)). An 
explanation for this observation is that the −36° VZA approached the hotspot most closely, which 
implies the least influence of shadowing effects and therefore a more pronounced first-order scattering, 
leading to an enhanced richness of subtle variations in reflectance [30,59]. This was particularly 
notable in the NIR spectral region. Such enhanced subtleties are assumed to be in a way related to an 
increased sensitivity towards structural variables [60,61], which makes the viewing angle closest to the 
hotspot of specific interest. 

Slightly less accuracy and variability in LAI retrievals was observed in nadir VZA (Figure 4 
(middle). The lowest accuracy in LAI retrievals occurred at +36° VZA (Figure 4 (bottom)). In this 
direction most of the leaf surfaces are shaded, thereby suppressing variations in reflectance and thus 
sensitivity in assessing foliage density. Similar results but for a coarser resolution of 275 m were 
obtained with the usage of multi-angular broadband MISR data [62,63]. These studies underlined that 
the surface anisotropy signatures varied with sun-target-sensor geometry as well as with seasonality 
due to changes in canopy composition and structure. Other studies [35,64] found increased sensitivities 
to vegetation structure and reduced understory effects in off-nadir viewing angles when compared to 
mono-directional nadir data. This evidence of increased sensitivity to vegetation structure supports the 
observation that the LAI retrievals from −36° VZA led to superior results when compared to the 
conventional nadir VZA. However, as our results showed that the differences between −36° and nadir 
direction were rather small, which suggests that in practice nadir observations are still a valid option. 

4.2. Combined Classification and Radiative Transfer Modelling Approach 

Vegetation classification prior to model inversion proved to be a vital step for proper retrieval of 
biophysical parameters in heterogeneous or patchy landscapes. Effectively, one of the main drawbacks 
regarding the usage of RT models is the poor representation of the ensemble of vegetation structural 
variables and optical properties present in the field (e.g., [65–67]). RT models are typically 
parameterized for a specific land cover type, e.g., crops, forest, grassland, thereby restricting model 
inversion to this specific land cover type. However, in patchy or heterogeneous landscapes, such as 
river floodplains, it cannot be assumed that model parameterization for one vegetation type is valid for 
the whole landscape. In this respect, the proposed 1D/3D parameterization (along with distinct optical 
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properties) per vegetation class ensures a more accurate representation of the landscape heterogeneity. 
From the generated LAI maps it can be observed that the three proposed classes of ‘herbaceous’, 
‘shrubs’ and ‘forest’ proved to be valid within the floodplain of the Millingerwaard. Though, at the 
same time the fact that spurious high results appeared over agricultural (maize) areas in the larger 
region suggests that these areas fell not within the range of simulations that were parameterized 
according to the ‘herbaceous’ class. For improved LAI retrievals it would therefore be wise to consider 
these areas as a new class and parameterize the RT model accordingly. In practice this can be easily 
done in ARTMO. 

A difficulty of vegetation class-based inversion is that it relies on a classified map that consists of 
well-chosen classes and is of sufficient quality. Apart from the enriched information content for 
retrievals of vegetation density properties, pointable observations can also enhance the classification 
process itself. However, its potential in the classification process has not been exploited to the fullest yet. 
In this study, classification was performed on the CHRIS nadir image only. Owing to the advantages of 
the multi-dimensionality of CHRIS, pointable observations may also be used as input into the 
classification method. For instance, Duca et al. [68] found that differences in classes were more evident 
in multi-angular band compositions than in RGB true colour compositions. By using stacked layers of all 
multi-angular CHRIS observations as classification input instead of relying on solely the nadir image 
they improved the neural network classification results with 7%. Several other studies demonstrated the 
strength of multi-angular information in improving land cover classification [30,69,70]. The latter 
authors improved the classification accuracy with a combination of nadir and off-nadir data, because as 
such they were better able to catch the canopy characteristics. Given these examples, a next step would 
be to elaborate on a more standardized protocol using data from pointable imaging spectrometers so 
that classifications and LAI retrievals can be realized in a more operational way. Besides, a more 
precise land cover map as base map may also lead to more accurate LAI retrievals. Apart from the here 
applied Maximum Likelihood classification numerous alternative classifiers exist which may be more 
successful in heterogeneous areas, such as unsupervised classifiers, support vector machines, fuzzy 
classifiers, neural networks (see review in [71]). Finally, when moving towards operational use, 
additional gain in accuracy can be achieved through: (i) synchronizing acquisition of field data with 
the satellite overpass; (ii) fine-tuning parameterization of vegetation classes for improved class-based 
model inversion; (iii) analyzing the relevant bands in the classification and inversion to minimize 
redundancy (e.g., see [72,73]); and (iv) optimizing the inversion strategy through more powerful cost 
functions and regularization options.  

4.3. Towards Spaceborne River Floodplain Monitoring 

Overall, this study profited from the availability of pointable hyperspectral CHRIS data and the 
advantages of the RT approach. With a physical model, the specific background and vegetation spectral 
characteristics for each vegetation type were taken into account, which makes LAI retrievals more 
accurate [41]. Because no additional in situ calibration data sets were needed for this RT approach, the 
class-based model inversion was easily applied to the larger area of the Gelderse Poort, which 
demonstrated the suitability of this approach to map the floodplains of the whole river catchment. 
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While CHRIS data were successfully inverted into LAI, it should nonetheless not be forgotten that 
PROBA is not an operational spacecraft but was designed as a technology demonstrator. In fact 
PROBA was initially intended as a one year mission [34]. Currently no new multi-angular imaging 
spectrometer missions are planned to be launched. Conversely, there is a growing trend to design a 
new generation of spaceborne imaging spectrometers with pointable capabilities. EnMAP is such an 
example with ±30° off-nadir pointing capabilities that aims to deliver operational data products [74]. In 
addition, another upcoming spaceborne system, named Vegetation and Environmental New micro 
Spacecraft (VENµS), also has pointable capabilities within the range of 30° along and across track and 
will be launched in 2013 [75]. For both of these sensors, vegetation monitoring of both crops and 
natural vegetation will be an important application domain. Our results support that off-nadir images 
benefit to the retrieval of LAI and may therefore be of specific interest in view of these upcoming 
pointable sensors. Further study is required to investigate the viewing angle effect on RT model 
inversion of vegetation properties, including the consequences for changing temporal resolutions.  

Regardless of progress with respect to refined LAI mapping, eventually one comprehensive flow 
resistance map is demanded by the river manager, which implies the collection of auxiliary 
information such a vegetation height [18]. Therefore, a next research step would be to explore data 
assimilation approaches whereby LAI can be combined with other relevant structural variables that can 
be derived from space. For instance, Straatsma et al. [12] and Forzieri et al. [20] used a fusion of 
airborne spectral and altimetry data sets to estimate roughness input parameters such as vegetation 
height and vegetation density, and subsequently used these data as input into a hydrodynamic model to 
compute flow resistance values of a local river floodplain. It is foreseen that in the forthcoming years it 
will become possible to upscale these approaches using spaceborne instruments, e.g., in combination 
with SAR data [21,76,77]. The advantages of relying on spaceborne optical data are ample; it offers a 
standardized, spatially-explicit and repeatable monitoring scheme that can cover complete river 
catchments with high spatial detail. Benefitting from the enriched information present in the backscatter 
direction, it is beyond doubt that operational pointable sensors (e.g., EnMAP, VENµS) will play an 
important role in vegetation monitoring programmes. Given this all, further research efforts should lie in 
elaborating on the compatibility of hydrodynamic models with spaceborne-derived input variables. 

5. Conclusions 

New methods are required to automate and streamline the time-consuming process of flow 
resistance calculation caused by vegetation in river floodplains. Deriving leaf area index (LAI), a 
proxy of vegetation density that can be quantified from space, holds promise for that purpose. 
Pointable imaging spectrometers possess advanced capabilities to derive LAI under a preferred 
viewing angle. A methodology for mapping LAI has been developed on the basis of inverting the ray 
tracing model FLIGHT against pointable CHRIS images, thereby taking the plant structural 
characteristics of different vegetation classes into account. The approach was applied to a 
heterogeneous river floodplain area that grades from semi-natural grasslands towards shrub and tree 
encroachments. The CHRIS nadir image was first classified into three distinct vegetation classes 
(‘herbaceous’, ‘shrubs’, ‘forest’) that formed the basis for class-based model inversion. By configuring 
FLIGHT per vegetation class, a more accurate representation of the heterogeneous nature of a river 
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floodplain can be achieved, i.e., ‘herbaceous’ and ‘shrubs’ were simulated in 1D mode while ‘forest’ 
was simulated in 3D mode. LAI values were subsequently pixelwise and class-based derived through 
model inversion, and this was carried out for each view zenith angle (VZA: nadir, ±36°) separately. 
LAI retrievals matched best with validation data at −36° backscatter direction (RMSE: 1.05), which is 
the viewing angle that was positioned near to the solar position, closely followed by nadir VZA 
(RMSE: 1.23). Most LAI variability was observed in these two viewing angles. This suggests that in 
the absence of pointable observations nadir-based observations would be perfectly appropriate for 
vegetation density monitoring applications. The forward scatterer +36° VZA led to considerably 
poorer retrievals (RMSE: 2.63) and is not recommended to be used for quantifying vegetation density. 
The herein proposed methodology has been implemented in a software package ARTMO; thereby, 
LAI maps over larger areas were generated in a semi-automatic way, while at the same time the 
heterogeneous nature of the landscape and the viewing configurations of the sensor have been properly 
interpreted. This approach opens floodplain monitoring opportunities in view of upcoming operational 
sensors with pointing capabilities such as EnMAP and VENµS. 
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