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ABSTRACT
The spaceborne imaging spectroscopy mission PRecursore IperSpettrale della Missione 
Applicativa (PRISMA), launched on 22 March 2019 by the Italian Space Agency, opens new 
opportunities in many scientific domains, including precision farming and sustainable agricul
ture. This new Earth Observation (EO) data stream requires new-generation approaches for the 
estimation of important biophysical crop variables (BVs). In this framework, this study evalu
ated a hybrid approach, combining the radiative transfer model PROSAIL-PRO and several 
machine learning (ML) regression algorithms, for the retrieval of canopy chlorophyll content 
(CCC) and canopy nitrogen content (CNC) from synthetic PRISMA data. PRISMA-like data were 
simulated from two images acquired by the airborne sensor HyPlant, during a campaign 
performed in Grosseto (Italy) in 2018. CCC and CNC estimations, assessed from the best 
performing ML algorithms, were used to define two relations with plant nitrogen uptake 
(PNU). CNC proved to be slightly more correlated to PNU than CCC (R2 = 0.82 and R2 = 0.80, 
respectively). The CNC-PNU model was then applied to actual PRISMA images acquired in 2020. 
The results showed that the estimated PNU values are within the expected ranges, and the 
temporal trends are compatible with plant phenology stages.
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Introduction

Nitrogen (N), naturally present in soil, is the most impor
tant macro-nutrient for vegetation growth and produc
tivity (Leghari et al., 2016), and for this reason, it is 
commonly provided in agriculture through fertilisation, 
in order to maximise biomass production and yield. If 
nitrogen deficiency can lead to crop production shortage, 
fertilisation excess can produce negative effects such as 
plant diseases or lodging, as well as environmental threats 
such as groundwater leaching or atmospheric pollution 
(greenhouse gas emission). A recent study estimated that 
worldwide nitrogen use efficiency in the agro-sector is 
about 60%, meaning that 40% of N, provided through 
fertilisation, is wasted in the environment, with negative 
economic and environmental impacts (Lassaletta et al., 
2016). Indeed, spatio-temporal information about 
important crop variables, such as plant nitrogen uptake 
(PNU – kg ha−1), is fundamental to assess actual plant 
needs and to develop smart agriculture applications 
devoted to improve N use efficiency, guarantee sustain
able crop production and reduce environmental impacts 
(Basso et al., 2016; Zarco-Tejada & Loudjani, 2017).

In the last decades, remote sensing was success
fully exploited to map crop nitrogen at farm level, in 

order to identify the variability of nutritional condi
tions among and within fields. Most studies derived 
information on crop nutritional status by estimating 
leaf/canopy chlorophyll content (Baret et al., 2007; 
Delloye et al., 2018; Guerif et al., 2007). This work
flow had a certain advantage since chlorophyll spec
tral absorption features are strong in the visible 
domain and easy to detect through multispectral 
data as a consequence of light harvest in the photo
synthesis process (Berger, Verrelst, Féret, Wang et al., 
2020). Although a significant amount of literature 
presents good relationships between nitrogen and 
chlorophyll (Hansen & Schjoerring, 2003; He et al., 
2016; Tian et al., 2011), it was also reported that this 
linkage is dependent on species and phenological 
status (Berger, Verrelst, Féret, Wang et al., 2020; 
Homolová et al., 2013). Additionally, it is important 
to remind that chlorophyll contains only a fraction of 
total leaf (plant) nitrogen (~19%), while the main 
sink consists of proteins such as rubisco (~30%; 
Berger, Verrelst, Féret, Wang et al., 2020; Kokaly 
et al., 2009). This condition does not guarantee the 
direct linkage between chlorophyll content and total 
nitrogen in plant tissue; hence, retrieval schemes 
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based only on chlorophyll estimation may not be 
transferable in time and space or across species. 
Consequently, the direct estimation of nitrogen 
from proteins is foreseen as the best way to exploit 
remote-sensing information for crop nutritional sta
tus monitored across agricultural sites and seasons 
(Berger, Verrelst, Féret, Wang et al., 2020).

Among the different methods presented in the lit
erature for the retrieval of biophysical variables (BVs), 
data-driven approaches, such as parametric regres
sions based on vegetation indices calculation (Cilia 
et al., 2014; Clevers & Gitelson, 2013; Nutini et al., 
2018; Stroppiana et al., 2009) or machine learning 
regression algorithm (MLRA) techniques (Verrelst 
et al., 2015, 2019), are the most commonly used (Liu 
et al., 2021). Despite the good results, the intrinsic 
empirical nature of these approaches bounds their 
use to the specific experimental conditions presented 
in each study, limiting the transferability to different 
contexts (including space, time and plant type/crop 
species). To overcome this issue, physically based 
methods were proposed for BV estimation through 
the inversion of radiative transfer models (RTMs). 
RTMs are based on equations devoted to reconstruct 
the vegetation reflectance spectrum, as measured by 
an Earth Observation sensor, considering target fea
tures such as vegetation parameters at both leaf and 
canopy level, background characteristics and illumina
tion/viewing geometry conditions. The estimation of 
BVs from RTMs can be performed by means of itera
tive numerical optimization or inversion based on 
look-up-tables of vegetation spectra (Verrelst et al., 
2019). Nonetheless, BV retrieval from RTMs remains 
challenging due to its expensive computational 
requirements. The hybrid approach, recently intro
duced by the scientific community for BV retrieval 
(Berger, Verrelst, Féret, Hank et al., 2020; Verrelst 
et al., 2020, 2019), represents a possible solution to 
this problem. This approach consists in the combina
tion of RTM and MLRA: RTM generates a database of 
simulated vegetation spectra (input), related to the 
vegetation BVs (output), and MLRA identifies a non- 
linear model between these input–output pairs. Thus, 
hybrid methods inherit the generalisation of physically 
based methods as well as the flexibility and computa
tional efficiency provided by MLRAs. A complete and 
exhaustive review on this topic is covered in Berger 
et al. (2020).

Recently, Féret et al. (2021) provided a modification 
of the well-known leaf-level RTM PROSPECT 
(Jacquemoud & Baret, 1990) by separating the contri
bution of proteins (Cp) and carbon-based constituents 
(CBCs) on leaf reflectance, thus allowing to simulate 
the effect of protein content on leaf spectra. This 
innovation opens new perspective for the retrieval of 
leaf protein content as a proxy of plant nitrogen 
uptake directly from spectroradiometric data. To 

perform N retrieval from Cp, high spectral resolution 
data in the full spectral range are needed: besides the 
mentioned chlorophyll related features in the visible 
and near infrared (VNIR) spectral region, the main 
protein absorptions are in the shortwave infrared 
(SWIR) domain (Berger, Verrelst, Féret, Wang et al., 
2020; Kokaly et al., 2009; Z. Wang, Skidmore, Wang, 
Skidmore, Wang et al., 2015). Hyperspectral data are 
therefore the candidate data source for protein estima
tion (Rast et al., 2019), and hybrid approaches are the 
state-of-the-art solution for such retrieval scheme. 
This approach for canopy nitrogen content (CNC) 
retrieval was recently tested using spectroradiometric 
field data (Berger, Verrelst, Féret, Hank et al., 2020), 
simulated hyperspectral satellite imagery (Candiani 
et al., 2022) and actual hyperspectral satellite data, 
providing the first landscape-level map (Verrelst 
et al., 2021) as well as multitemporal and multi-crop 
analyses (Tagliabue et al., 2022). The foreseen hyper
spectral data stream from space, provided by already 
launched satellites, such as PRISMA (Loizzo et al., 
2016, 2019) from the Italian Space Agency (ASI) or 
EnMap (Chabrillat et al., 2020) from the German 
Space Agency (GFZ-DLR), or future satellite mission 
planned in the upcoming years, such as CHIME 
(Nieke & Rast, 2019) from the European Space 
Agency (ESA) or SBG (Thompson et al., 2020) from 
the National Aeronautics and Space Administration 
(NASA), will open new opportunities in crop moni
toring, sustainable agriculture and precision farming 
(Hank et al., 2019). In this framework, it is important 
to study and develop new efficient methods for the 
operational mapping of important crop traits, such as 
chlorophyll and nitrogen content, exploiting the 
already available hyperspectral satellite data (i.e. 
PRISMA).

Consequently, it is necessary to further test the 
potentiality of hybrid approach to assess canopy chlor
ophyll and nitrogen content, to evaluate the perfor
mance of different MLRAs and the impact of 
hyperspectral feature selection on BV retrieval. 
Moreover, it is necessary to set up operational work
flows for PNU estimation and to analyse the advantage 
of the canopy nitrogen content retrieved from proteins 
with respect to traditional approaches based on chlor
ophyll estimation. Finally, generation and analysis of 
multitemporal maps are required to fully assess the 
capability of imaging spectroscopy to estimate PNU, 
as an added value for sustainable agriculture.

Therefore, this work develops a hybrid approach 
for the estimation of maize canopy chlorophyll con
tent (CCC) and canopy nitrogen content (CNC) from 
actual PRISMA data with the final goal to (i) evaluate 
the retrieval performance of hybrid models for CCC 
and CNC, (ii) compare the relations of these BVs with 
PNU and (iii) demonstrate PRISMA capabilities to 
map PNU.
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Materials and methods

General workflow of the study

Figure 1 provides a synthetic representation of the 
general workflow of this study (top panel – A) and 
the method and data specifically used for each step 
(bottom panel – B). The first step consists in the set-up 
of hybrid models for PRISMA (database generation 
and training and validation of different MLRA and 
dimensionality reduction – DR combination) for the 
estimation of CCC and CNC. The best hybrid models 
for CCC and CNC from cross-validation were applied 
to PRISMA-like data, obtained by HyPlant-DUAL 
hyperspectral airborne images, to compare BV maps 
with ground data (Step 1). Specific regressive 
models between CCC and CNC and PNU were 
defined using 2018 ground data and PRISMA-like 
estimations (Step 2). Finally, the best hybrid model 
for BV retrieval was applied to actual PRISMA data 
acquired on the same study area on 2020 (Step 3). The 
best BV–PNU linear model was then applied to BV 
maps to generate PNU maps. PNU crop dynamics at 
parcel level was evaluated comparing ranges of para
meter estimation to crop phenological status and 
development as derived from time series of Sentinel- 
2 data (Step 4). Further details will be given in the 
following sections.

Study area and field measurements

The study area is located in Tuscany (42°49ʹ47.02” 
N 11°04ʹ10.27” E; elev. 2 m a.m.s.l.), Central Italy, 
North of Grosseto, at 20 km far from the coastline 
(Figure 2). The site consists of a large flat irrigated area 
where different crops are cultivated. Within the study 

area, two maize crops of approximately 76 ha (F1) and 
33 ha (F2) were selected as test sites. These two fields 
feature different irrigation systems and different sow
ing dates. In particular, because of its extension, F1 
was divided into subzones, each sown at different 
dates.

During June and July 2018, in the framework of the 
FLuorescence EXplorer mission of the European 
Space Agency (ESA-FLEX) project, two field cam
paigns were carried out on the two fields, in order to 
collect a comprehensive dataset of biochemical and 
biophysical parameters. Independent measurements 
were conducted on 87 Elementary Sampling Units 
(ESU) of 10 × 10 m2, following international protocols 
and guidelines, as proposed by the CEOS LPV group 
(Morisette et al., 2006) and the VALERI project 
(Weiss, 2006).

Leaf biochemical variables, such as chlorophyll 
content (LCC), nitrogen concentration (N%) and leaf 
mass per area (LMA), were measured from the last 
fully developed leaf from three plants collected on 
a subset of 31 ESUs. Laboratory extractions of LCC, 
N% and LMA were performed on a set of three disks 
with 2.2 cm diameter (total area 11.40 cm2) sampled 
from each leaf. In addition, for all the 87 ESUs, indir
ect measurements of leaf chlorophyll were acquired 
using a SPAD-502 chlorophyll meter (Konica Minolta, 
Japan). LCC values from laboratory extractions (71 
samples) and the corresponding SPAD measurements 
were used to identify the SPAD–LCC relationship 
(R2 = 0.93): 

LCC μg cm� 2� �
¼ 8:24e0:0324�SPAD (1) 

Leaf nitrogen content (LNC) was calculated from N% 
and LMA according to the following equation: 

Figure 1. General workflow of the methodological phases followed in this study.
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LNC mg cm� 2� �
¼ 10 �Nmass � LMA (2) 

In addition, leaf area index (LAI) was measured in all 
ESUs using either LAI2200 plant analyser (LI-COR 
Biosciences, USA) or digital hemispherical photogra
phy (Jonckheere et al., 2004; Weiss et al., 2004), 
depending on the plant development stage. LAI values 
were then used to derive CCC and CNC according to 
the following equations: 

CCC gm� 2� �
¼

1
100
� LCC � LAI (3) 

CNC gm� 2� �
¼ 10 � LNC � LAI (4) 

Finally, plant density was measured in 27 ESUs. In 
each of these ESUs, two plants were randomly sampled 
for subsequent leaf and stalk dry weight measurement. 
Biomass was calculated by multiplying plant density 
by average plant dry weight (leaf plus stalks). On the 
same leaf and stalk samples, nitrogen concentration 
was also measured in laboratory using CN elemental 
analyser (Flash EA 1112 NC-Soil, Thermo Fisher 
Scientific, Pittsburgh, PA, USA), and PNC [N%] was 
obtained as a weighted average relative to the weight of 
these specific plant organs. Plant nitrogen uptake was 
then derived following the equation: 

PNU kg ha� 1� �
¼ 100 � Biomass � PNC (5) 

More details of the field and laboratory measurement 
protocols can be found in Candiani et al. (2022). 
Table 1 provides a summary of the available ground 
measurements.

EO dataset

The main EO dataset is represented by PRISMA ima
gery. PRISMA is a medium-resolution hyperspectral 

imaging mission of ASI launched in 2019. The 
PRISMA project is conceived as a pre-operational 
and technology demonstrator mission, focused on 
the development and delivery of hyperspectral pro
ducts and the qualification of the hyperspectral pay
load in space. The mission provides hyperspectral 
images at 231 bands, with a swath of 30 km and 
a GSD of 30 m. The spectral resolution is finer than 
12 nm all over the sensor spectral range (400– 
2500 nm). The satellite includes a panchromatic sen
sor providing images in the visible spectral range, with 
a GSD of 5 m.

Since PRISMA was not available during the field 
campaign carried out in 2018, PRISMA-like data were 
simulated from two hyperspectral images acquired by 
the airborne sensor HyPlant-DUAL at the same time 
of the ground measurements. These images feature 
480 bands with a spectral resolution (full width half 
maximum [FWHM]) of 3–10 nm in the spectral range 
380–2510 nm and a GSD value of 1 m and 4.5 m for 
the scenes acquired on 7 and 30 July, respectively. The 
atmospheric correction was performed through an 
empirical line method using spectral signatures of 

Figure 2. Study area and field measurements. Panel (a) shows the study area, field boundaries and maize cultivation (yellow- 
meshed colour) for 2020, 1 August 2020 PRISMA false colour image on the background. Panel (b) indicates the test fields showing 
the ESU of the first (light blue points) and second (yellow points) field campaigns, 31 July 2018 HyPlant-DUAL false colour image 
on the background.

Table 1. Crop traits at leaf (L), canopy (C) and plant (P) level.
Level Parameter Unit ESU Range Method

L LCC µg cm−2 87 25.2–54.4 Indirect
L LMA g cm−2 31 0.0040–0.0054 Destructive
L LNC mg cm−2 31 0.072–0.197 Derived
C LAI m2 m−2 87 0.11–5.70 Indirect
C CCC g m−2 87 0.05–2.88 Derived
C CNC g m−2 31 0.22–9.44 Derived
P Biomass kg m−2 27 0.18–10.00 Destructive
P PNC % 27 0.9–4.1 Destructive
P PNU kg ha−1 27 70–162 Derived

LCC: leaf chlorophyll content; LNC: leaf nitrogen content; LAI: leaf area 
index; PNC: plant nitrogen content; CCC: canopy chlorophyll content; 
CNC: canopy nitrogen content; PNU: plant nitrogen uptake.
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artificial targets, vegetation, water and soil, acquired 
during the field campaigns (Siegmann et al., 2019). To 
simulate PRISMA-like data, HyPlant-Dual dataset was 
spectrally resampled to PRISMA wavelengths using 
Gaussian spectral response functions with band cen
tres and FWHM values computed from actual 
PRISMA data.

The 2020 dataset includes two L2D PRISMA 
images acquired on 21 June and 1 August. In 
order to obtain smooth spectra, PRISMA images 
were pre-processed using RStudio® following the 
procedure described in Tagliabue et al. (2022) and 
Verrelst et al. (2021). This procedure included sev
eral steps: (i) random spikes at specific wavelengths 
were removed using findpeaks function included in 
the “pracma” package (Borchers, 2013), (ii) noisy 
wavelengths were excluded comparing PRISMA 
reflectances to ground spectra (i.e. vegetation, 
asphalt, and crop residues) collected with a field 
spectroradiometer (SR-4500; Spectral Evolution, 
USA); and (iii) a spline smoothing interpolation 
was then applied using the SplineSmoothGapfilling 
function implemented in the “FieldSpectroscopyCC” 
package (Julitta et al., 2016).

Moreover, for both simulated (Berger et al., 2018) 
and actual (Berger, Verrelst, Féret, Wang et al., 2020) 
PRISMA data, water absorption regions were excluded 
as well as other bands in the blue region based on 
considerations in Upreti et al. (2019) and Weiss, 
Baret et al. (2020). The final set included 150 bands 
in the spectral ranges 456.2–759.84 nm, 780.66– 
918.92 nm, 969.3–1109.71 nm, 1163.45–1338.91 nm, 
1501.74–1784.39 nm and 2019–2320.59 nm.

In addition to the PRISMA dataset, 31 Sentinel-2 
(S2) level 2A images acquired from March to 
November 2020 were downloaded and pre-processed 
by means of “sen2r” R package (L. Ranghetti et al., 
2021; Team, 2021) with the goal to reconstruct tem
poral crop dynamics to evaluate 2020 PRISMA PNU 
maps. The “sen2r” package was used to automatically 
download all the S2 images available on the study area 
between March and November 2020 and process them 
in order to resample at 10 m all the bands and to 
extract quality metadata (Scene Classification Map – 
SCL). Table 2 shows all the EO datasets described 
before and used in this study.

Hybrid model set-up

The hybrid approach involves two steps: (i) the gen
eration of a reflectance spectra database and (ii) the 
training of MLRAs. The RTM is used to generate 
a database of thousands of crop reflectance spectra 
according to a wide range of crop leaf and canopy 
parameters as well as background reflectance, viewing 
and illumination geometry. The advantage of using 
RTMs is the possibility to simulate different condi
tions which can be found in crop fields, hence widen
ing the range of situations found in limited ground 
measurements. This database together with the asso
ciated BVs of interest is then used as input to train 
MLRAs. Compared to a traditional ML data-driven 
approach, the combination of physically based RTMs 
with the flexibility and computational efficiency of 
MLRAs should guarantee the identification of generic 
and robust models, hence their exportability in differ
ent contexts, enabling the operational monitoring of 
BVs. Table 3 shows the advantages of hybrid approach 
and some critical aspects to be considered when set
ting and using the model for crop trait retrieval and 
analysing the results.

Database generation phase
The RTM used for the database generation was the 
PROSAIL, one of the most exploited RTMs 
(Jacquemoud et al., 2009) which includes the leaf 
model PROSPECT (Jacquemoud & Baret, 1990) and 
the canopy model SAIL (Verhoef, 1984). In particular, 
an ad-hoc MATLAB® script was developed for this 
study to combine the latest version of the leaf model 
PROSPECT (PROSPECT-PRO, Féret et al., 2021) with 
the canopy model 4SAIL (Verhoef, 1984; Verhoef 
et al., 2007).

In order to simulate leaf reflectance, the 
PROSPECT model requires several input parameters, 
describing the leaf structure (N) as well as the content 
of chlorophyll (LCC), carotenoid (Ccx), anthocyanin 
(Canth), brown pigment (Cbp) and water (Cw). 
Moreover, PROSPECT-PRO introduced two addi
tional variables to differentiate the absorption beha
viour of protein content (Cp) and carbon-based 
constituents (CBCs), which includes cellulose, lignin, 
hemicellulose, starch and sugar. Leaf reflectance 
obtained from PROSPECT-PRO can be passed to 

Table 2. Details of EO datasets used in this study: year of the dataset, sensor, number of available images, bands, ground sampling 
distance and acquisition dates (original values are reported in round brackets).

Year Sensor Images Bands GSD Dates

2018 PRISMA-like 
(HyPlant-DUAL)

2 150 (480) 1 m 
4.5 m

7 July 2018 30 July 2018

2020 PRISMA 2 150 (231) 30 m 21 June 2020 
01 August 2020

2020 Sentinel-2 31 10 (12) 10 m From March 
to November

EUROPEAN JOURNAL OF REMOTE SENSING 5



4SAIL to simulate the canopy reflectance in a simple 
way, requiring only few parameters, such as leaf area 
index (LAI) and average leaf angle (ALA). 
Additionally, the model requires information on illu
mination conditions and viewing geometry, such as 
Solar Zenith Angle (SZA), Observer Zenith Angle 
(OZA), relative Azimuth Angle (rAA) and the hot- 
spot effect (Hot parameter), computed as the ratio of 
leaf size over canopy height (Kuusk, 1991) and the 
reflectance of the background below vegetation 
canopy (BG).

The simulations from PROSAIL-PRO were used to 
create a training database of 2000 maize reflectance 
spectra, based on different combinations of input vari
ables, randomly sampled from either normal or uni
form probability density functions, defining the crop 
(leaf and canopy) parameters, the soil type and the 
sun-sensor geometry. According to preliminary stu
dies (M. Ranghetti et al., 2021), the size of 2000 sam
ples was chosen as the best trade-off between accuracy 
and computation cost. Table 4 shows the input para
meters with their symbols, units of measurement, 
probability distribution functions and ranges of the 
sampled data. The ranges of the input parameters 
were set according to the available field measurements 
or literature values (Berger et al., 2018) when field 
measurements were not available.

From each set of input variables, the canopy reflec
tance was simulated at the spectral resolution of 1 nm, 
ranging from 400 to 2500 nm. These spectra were then 
resampled at PRISMA spectral configuration (150 
bands) according to the procedure described in 
Section “EO Dataset”. Starting from the input RTM 
variables, CCC and CNC were computed according to 
Equations (3) and (4). The database with 2000 reflec
tance spectra and the corresponding CCC and CNC 
values was used as input in the following MLRA train
ing phase.

MLRA training phase
During the training phase of CCC and CNC models, 
different combinations of MLRAs and dimensionality 
reduction (DR) methods were tested. The ML algo
rithms used in this study include Gaussian Process 
Regression (GPR), Artificial Neural Networks (NN), 
Partial Least Square Regression (PLSR), Random 
Forests (RF) and Support Vector Regression (SVR). 
Table 5 gives a brief overview of the adopted ML 
algorithms.

Full spectral signature has been previously adopted 
in retrieval approaches based on look-up table inver
sion (Wang et al., 2018; Zheng et al., 2018; Zhou et al., 
2020) or numerical optimization strategies (Wang, 
Skidmore, Darvishzadeh et al., 2015; Wang, 

Table 4. Parametrization of the leaf (PROSPECT-PRO) and canopy (4SAIL) model with unit of measurements, ranges and 
distributions coming from the field campaign.

Param. Description Unit PDF Rangea

PROSPECT-PRO N Structural parameter - Normal 1.4 0.14
LCC Chlorophyll content μg cm−2 Normal 41.5 8.8
Ccx Carotenoid content μg cm−2 Normal 7.32 1.5

Canth Anthocyanin content μg cm−2 Normal 0 0
Cbp Brown pigment μg cm−2 Normal 0 0
Cw Water content mg cm−2 Normal 12.92 1.91
Cp Protein content g cm−2 Uniform 0 0.001

CBC Carbon-based constituents g cm−2 Uniform 0.003 0.006
4SAIL ALA Average leaf angle deg Normal 49 4.9

LAI Leaf area index m2 m−2 Normal 1.77 1.4
HOT Hot spot parameter m m−1 Normal 0.01 0.001
SZA Solar Zenith Angle deg Uniform 26 30
OZA Observer Zenith Angle deg Uniform 0 0
RAA Relative Azimuth Angle deg Uniform 0 0
BG Soil spectra - Uniform 1 4

a min and max values in case of uniform PDF; μ and σ values in case of normal PDF.

Table 3. Advantages and limitations/critical aspects of hybrid approach for crop traits retrieval.
Advantages Limitations and critical aspects

RTM ● Use of RTM allows to generate a wide range of physically sound crop 
spectra

● Besides sun-target-sensor geometry and background, database generation 
needs only crop trait ranges and their distributions as input

● Flexible generation of database cardinality

● In some real cases, RTM assumptions may not be valid
● Simulated spectra rely on proper calibration of selected 

RTM
● Potential un-realistic combination of crop traits in 

simulation
MLRA ● MLRA is a flexible and computational-efficient method to solve not linear 

relationships between spectra and crop traits
● MLRA sometimes can be considered a sort of “black box”
● Limited training database and/or incorrect tuning setup 

may lead to overfitting or underfitting solutions
Hybrid ● Field data are not required in the hybrid training phase

● RTM+MLRA provides more robust models across space (different agro-sites) 
and time (different crop seasons)

● Hybrid model can only retrieve crop traits in the training 
database ranges

● Possible computational-demanding solutions
● Require validation with independent dataset to assess 

transferability
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Skidmore, Wang et al., 2015). However, despite the 
high information content provided by hyperspectral 
sensors like PRISMA, thanks to hundreds of narrow 
bands, such datacube is affected by the so-called curse 
of dimensionality (Hughes phenomenon; Hughes, 
1968) and is characterised by spectral redundancy 
and noise, which may lead to suboptimal regression 
performances (Verrelst et al., 2019). For such reason, 
DR strategies are proposed in the literature to mitigate 
this problem and improve model efficiency (Bruce 
et al., 2002; Mojaradi et al., 2009; Rivera-Caicedo 
et al., 2017). Different approaches are available based 
on band selection, either expert based (Wang et al., 
2015) or automatic (Verrelst, Rivera et al., 2016) and 
feature transformation (Candiani et al., 2022; Pepe 
et al., 2020). A recent paper by Pascual-Venteo et al. 
(2022) performed an analysis of different DR methods, 
comparing band selected by statistical ranking against 
principal component analysis (PCA) in a hybrid 
retrieval approach. Results show that PCA with 20 
components, explaining about 99.95% cumulative var
iance of the full spectral data, slightly outperformed 
band ranking in the retrieval of all the considered 
variables. On the basis of these results, PCA was con
sidered as the most promising DR strategy to be 
exploited in the hybrid approach. This technique 
transforms a large set of variables (hyperspectral 
bands) into a new one where the first components 
contain most of the information of the original set. 
Reducing the number of variables in a dataset natu
rally comes at the expense of accuracy, but smaller 
datasets are easier to explore and visualise and make 
ML computation faster. Therefore, different 
numbers of components (PCA-5, PCA-10, PCA-15 
and PCA-20) were tested as input to ML to assess 
their impact on model performance.

In addition, the database is simulated without con
sidering different environmental and instrumental 
uncertainties, such as sensor or instrument noise, 
RTM assumption, radiometric calibration, atmo
spheric and geometric correction (Baret et al., 2007); 
therefore, the addition of noise before MLRA training 
phase helps to generalise the pure RTM model 

outputs. As such, a Gaussian white noise of 5% was 
added to the parameters and canopy reflectances.

At the end of this process, the performance of all 40 
model combinations (5 MLRAs × 4 DRs × 2 BVs) was 
assessed through a k-fold cross-validation technique, 
with k = 10. In particular, the analysed metrics are the 
following: Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), RMSE relative to mean 
observed values (rRMSE), RMSE normalised with 
respect to observed range values (nRMSE) and the 
Coefficient of Determination (R2).

BV validation and their relationship with PNU
The best performing trained models for CCC and 
CNC were then applied to the 2018 datasets reported 
in Table 2. The independent validation of estimated 
CCC and CNC data was performed against ground 
data measured during the ESA-FLEX campaign car
ried out in 2018 according the same error metrics 
computed in cross-validation phase. Among these 
error metrics, MAE was chosen as an indicator to 
assess the best-performing algorithm for CCC and 
CNC, respectively. All the steps involving model train
ing, validation and generation of maps were per
formed through ARTMO (Verrelst et al., 2021). 
Orthogonal regression analysis (reduced major axis 
[RMA]) was adopted to analyse performance and 
identify a predictive relation between PRISMA- 
derived CCC or CNC and field measurements of 
PNU. The MATLAB® gmregress function was used 
for this analysis (Trujillo-Ortiz & Hernandez-Walls, 
2010). RMA regression is specifically formulated to 
handle errors in both the x (independent – BVs) and 
y (dependent – PNU) variables. The method was pro
posed in the literature for estimation of biophysical 
variables by taking into account uncertainty in both 
ground and remote measures (Berterretche et al., 
2005; Cohen et al., 2003).

PNU map demonstration
In order to demonstrate hybrid approach and PRISMA 
capability to map PNU, the best hybrid model for BV 
estimation, identified in the previous step, was applied 

Table 5. Brief description and references of the algorithms tested in this study.
Algorithm Brief Description References

PLSR A technique that reduces the predictors to a smaller set of uncorrelated 
components and performs least squares regression on these components, 

instead of on the original data.

(Geladi & Kowalski, 1986)

GPR A kernel-based regression method that uses a stochastic probability 
distribution-based process for providing estimates with their level of 

uncertainties.

(Rasmussen & Williams, 2006)

SVR A technique for investigating the relationship between a small set of training 
data samples (called support vector) and a real-valued variable.

(Zhang & O’Donnell, 2020)

NN Composed of many layers of artificial neurons that transform input data into 
outputs while learning how to minimize the chance for errors and 

unwanted results.

(Schmidhuber, 2015)

RF It operates by constructing several decision trees during training time and 
outputting the mean of the classes as the prediction of all the trees.

(Breiman, 1996, Breiman, 2001)
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to the actual 2020 PRISMA dataset. The BV–PNU 
relation was then used to convert the BV maps into 
PNU maps, over the agricultural study area.

In order to investigate the temporal behaviour of 
the considered crops and to extract remarkable crop 
dates, Sentinel-2 dataset acquired in 2020 over the 
same area of interest was also exploited to extract 
and analyse time series of the Modified Soil Adjusted 
Vegetation Index 2 (MSAVI2, hereinafter referred as 
MSAVI; Qi et al., 1994).

In particular, the R package “sen2rts” (L. Ranghetti 
et al., 2021) was exploited to extract MSAVI time 
series over the boundaries of 39 maize fields according 
to official regional information (http://dati.toscana.it/ 
dataset/artea-piani-colturali-grafici-annualita-2020, 
accessed 5 November 2021). Raw values were 
smoothed using a Savitzky-Golay lowpass filter, 
using the SCL layer to weight them based on their 
associated quality. Maize cropping cycles were identi
fied and interpolated with a double logistic function, 
from which the following relevant dates were 
computed:

● Start of season (SOS), as the date in which the 
first derivative of the growing curve reached the 
10% of its maximum value;

● Peak of production (POP), as the date of occur
rence of the maximum interpolated MSAVI 
value;

● End of season (EOS), as the date in which the 
descending curve reached the 50% of its relative 
value.

These phenological dates were used to interpret 
PNU values, estimated at the two PRISMA acquisition 
dates, according to crop development. Besides the 
assessment of absolute estimation values (ranges in 

relation to expected values) and interpretation of 
consistency of produced maps in terms of identified 
spatial patterns (within field variability), phenological 
analysis was devoted to assess reliability of estimated 
PNU temporal variation.

Results

Hybrid model performance for CCC and CNC

Generally, good results were obtained in cross- 
validation for all algorithms with their tested dimen
sionality reduction (PCA) with R2 values ranges 
between 0.90–0.97 and 0.56–0.68 and MAE ranges 
between 0.05–0.11 g m−2 and 0.80–0.91 g m−2 for 
CCC and CNC, respectively. GPR resulted in the 
most suitable algorithm, followed by NN, RF and 
finally SVR and PLSR. Moreover, for all the tested 
algorithms, except for PLSR, PCA-15 and PCA-20 
led to slightly superior results than using PCA with 
less components (PCA-5 and PCA-10). The perfor
mances of the hybrid ML algorithms in cross- 
validation configuration are resumed in Tables 6 and 
7. According to cross-validation metrics (MAE and 
R2), the best algorithm configuration was represented 
by GPR (as ML) with PCA20 (as DR), for both BVs.

BV validation and PNU relation

These models were used to map CNC and CCC from 
PRISMA-like images. The estimations of CCC and 
CNC were validated using, respectively, 87 and 31 
field measurements, available from the Grosseto 2018 
dataset. Good results were obtained for CCC and CNC 
with R2 around 0.79 and 0.84 and nRMSE around 19% 
and 15%, respectively. Figure 3 shows the scatterplots 
between measured and estimated BVs. In general, 

Table 6. Cross-validation metrics of hybrid MLRAs and DR tested for CCC retrieval: Mean Absolute 
Error (MAE, g m−2), Root Mean Squared Error (RMSE, g m−2), relative RMSE (rRMSE, %), normalised 
RMSE (nRMSE, %) and coefficient of determination (R2).

MLRA DR MAE RMSE rRMSE nRMSE R2

GPR PCA-20 0.053 0.114 16.684 2.562 0.971
GPR PCA-15 0.055 0.119 17.394 2.671 0.969
GPR PCA-10 0.058 0.126 18.484 2.838 0.964
NN PCA-20 0.064 0.119 17.501 2.687 0.968
GPR PCA-5 0.067 0.150 21.911 3.364 0.950
NN PCA-15 0.068 0.123 17.992 2.763 0.966
NN PCA-10 0.072 0.132 19.325 2.967 0.961
NN PCA-5 0.080 0.155 22.717 3.488 0.946
RF PCA-10 0.082 0.166 24.357 3.740 0.939
RF PCA-5 0.082 0.170 24.894 3.823 0.936
RF PCA-15 0.082 0.166 24.302 3.732 0.939
RF PCA-20 0.083 0.166 24.283 3.729 0.939
SVR PCA-20 0.099 0.184 27.017 4.148 0.931
SVR PCA-15 0.101 0.188 27.588 4.236 0.928
SVR PCA-10 0.104 0.201 29.434 4.520 0.920
PLSR PCA-5 0.107 0.166 24.333 3.736 0.938
PLSR PCA-10 0.111 0.164 23.954 3.678 0.940
PLSR PCA-20 0.111 0.164 24.050 3.693 0.940
PLSR PCA-15 0.111 0.164 24.045 3.692 0.940
SVR PCA-5 0.114 0.222 32.582 5.003 0.902

Results ordered according to MAE values.
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CCC resulted in somewhat overestimated, whereas 
CNC retrieval was slightly underestimated. 
Moreover, the scatterplot highlights higher uncertain
ties in the CNC retrieval, featuring higher coefficient 
of variation values than those associated to CCC 
retrieval.

Both BV estimations resulted in strongly corre
lated to ground measurements of PNU (Figure 4), 
with CNC showing a slightly better correlation with 
respect to CCC (R2 = 0.82 and R2 = 0.80, respec
tively). Moreover, remote-sensed CNC is a direct 
estimation of a fraction of PNU, representing the 
organ-specific uptake from the leaves. In this view, 
the underestimation reported in the plot is an 
expected behaviour (Bender et al., 2013; Berger, 
Verrelst, Féret, Hank et al., 2020). Indeed, this 
characteristic of CNC, together with the slightly 
better correlation with PNU, supports this BV 
being potentially more important than traditional 
CCC to assess maize nutritional status.

PNU maps from PRISMA data

Figure 5 shows PNU maps, obtained from actual 
PRISMA data acquired on 21 June 2020 (Figure 5(a, 
c)) and 1 August 2020 (Figure 5(b,d)) with the pro
posed retrieval approach. The maps show a typical 
situation of summer Mediterranean cropland: 
a majority of land with low PNU values (reddish 
colours) and few fields with high PNU values (green- 
bluish colours). Low PNU values in the June image 
may represent either winter crop fields (in senescence 
phase or already harvested) or secondary crop fields 
with late sown (see southern portion of F1 in Figure 5 
(c)) or alfalfa fields after mowing. High PNU values in 
June, besides the maize fields, correspond to sunflower 
and chickpeas, whose patches disappear in the August 
image as a consequence of harvesting. In August, the 
only fields in vegetative phase are represented by 
maize crop.

In order to evaluate the PNU maps generated from 
the proposed approach, boxplot diagrams of PNU 

Table 7. Cross-validation metrics of hybrid MLRAs and DR tested for CNC retrieval: Mean Absolute 
Error (MAE, g m−2), Root Mean Squared Error (RMSE, g m−2), relative RMSE (rRMSE, %), normalised 
RMSE (nRMSE, %) and coefficient of determination (R2).

MLRA DR MAE RMSE rRMSE nRMSE R2

GPR PCA-20 0.804 1.236 67.294 7.454 0.680
GPR PCA-15 0.806 1.238 67.380 7.464 0.679
GPR PCA-10 0.827 1.283 69.832 7.735 0.656
NN PCA-15 0.835 1.243 67.679 7.497 0.677
GPR PCA-5 0.846 1.299 70.738 7.836 0.647
NN PCA-20 0.849 1.272 69.246 7.670 0.662
NN PCA-10 0.853 1.311 71.350 7.903 0.641
NN PCA-5 0.855 1.294 70.429 7.801 0.650
RF PCA-15 0.856 1.333 72.578 8.039 0.629
RF PCA-20 0.858 1.335 72.699 8.053 0.628
RF PCA-10 0.872 1.377 74.960 8.303 0.603
SVR PCA-20 0.876 1.375 74.882 8.295 0.607
SVR PCA-15 0.879 1.388 75.579 8.372 0.601
RF PCA-5 0.881 1.385 75.404 8.352 0.599
PLSR PCA-5 0.893 1.314 71.548 7.925 0.639
SVR PCA-10 0.895 1.438 78.303 8.673 0.571
SVR PCA-5 0.902 1.456 79.287 8.782 0.562
PLSR PCA-10 0.905 1.274 69.358 7.683 0.661
PLSR PCA-15 0.912 1.278 69.581 7.707 0.659
PLSR PCA-20 0.912 1.278 69.584 7.708 0.659

Results ordered according to MAE values.

Figure 3. CCC (a) and CNC (b) validation scatterplots. CV represents the coefficient of variation.
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values were produced for each maize field. These box
plots were compared to the temporal MSAVI trend of 
the same field. Figure 6 reports this comparison for 

four different fields, presenting different dynamics 
according to sowing dates, cultivated varieties and 
agro-practices. MSAVI plots show original (black 

Figure 4. PNU correlation with CCC (a) and CNC (b). Black line represents the fit between estimated CCC and measured PNU values; 
blue areas identify the confidence levels of 80%, 95% and 99%.

Figure 5. PNU maps and zoom on fields with different intra-fields sowing dates (c–d) on (a) 21 June 2020 and (b) 1 August 2020.
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dots) and Savitzky–Golay smoothed (black line) 
Sentinel-2 data and the double logistic curve (red 
line) used to assess crop phenological stages. The 
MSAVI analyses of the selected fields highlight situa
tion where maize was in vegetative phase (Figure 6(b, 
d), late sowing) or already in reproductive phase 
(Figure 6(a,c), early sowing) during PRISMA 
acquisitions.

Discussion

Hybrid workflow configuration to estimate 
nitrogen uptake

Accuracy and error metrics from the cross-validation 
analysis demonstrated how GPR resulted in the best- 
performing algorithm (four times out of five best 
ranks – see Tables 6 and 7) among all the tested ML 
× DR combinations, for both BVs. In particular, the 
GPR-PCA20 configuration provided the absolute best- 
performing metrics in cross-validation: R2 = 0.97 and 
0.68 and RMSE 0.11 g m−2 and 1.23 g m−2 for CCC 
and CNC, respectively. These results are in agreement 
with other studies found in the literature, confirming 
GPR algorithm to be a useful tool for the operational 
retrieval of biophysical variables from either multi
spectral (Upreti et al., 2019; Zhou et al., 2020) or 
hyperspectral (Berger, Verrelst, Féret, Hank et al., 
2020; Candiani et al., 2022; Tagliabue et al., 2022; 
Verrelst et al., 2021) data. Another high-performing 
ML algorithm was NN, with 20 and 15 PCA compo
nents for CCC and CNC, respectively. Indeed, NN is 
used in different hybrid approach (Delloye et al., 

2018), and it was selected as the base for operational 
products generated with Sentinel-2 data in the official 
ESA biopar processor SNAP (ATBD, Weiss, Baret 
et al., 2020). Recently, Upreti et al. (2019) tested dif
ferent ML algorithms for the estimation of LAI, LCC, 
CCC and fractional cover, in two test sites located in 
Maccarese (Italy) and Shunyi (China). Regarding 
CCC, PLSR and RF resulted the best configurations 
for Maccharese and Shunyi, respectively. In another 
study, Liu et al. (2021) used RF in a hybrid retrieval 
schema for CCC but selecting it a priori with no 
comparison with other algorithm.

In conclusion, hybrid approaches are proposed as 
efficient inversion schemes, but no common agree
ment still exists about the best ML to be adopted. 
From the results achieved in this study, GPR and 
PCA transformation represented the best solution for 
CCC and CNC retrieval. This is in accordance with 
other papers which demonstrated that GPR with 
applied PCA ensures good estimation accuracy for 
crop BVs (Candiani et al., 2022; Danner et al., 2021; 
De Grave et al., 2020; Rivera-Caicedo et al., 2017; 
Tagliabue et al., 2022). Besides the good experimental 
results obtained in this study, performance and effi
ciency provided by coupling GPR and PCA are also 
confirmed by their intrinsic characteristic. GPR, being 
a kernel-based regression method, works well with 
small dataset and can provide uncertainty errors, in 
other words, an insight of how the algorithm is per
forming. Moreover, a spectral reduction based on the 
PCA approach has the benefit to exploit the full spec
tral signature and, at the same time, to reduce 

Figure 6. Temporal MSAVI and PNU boxplot in four different maize fields. Original and Savitzky–Golay smoothed Sentinel-2 data 
are reported as black dots and black line, respectively. The red line represents the double logistic curve used to compute the dates 
of start of season (green), peak of production (blue) and end of season (orange). The red dashed lines are the dates of PRISMA 
acquisitions for which PNU maps were calculated (21 June 2020 and 1 August 2020).
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collinearity and redundancy typical of high- 
dimensional data like hyperspectral images.

BV retrieval performance and PNU relation

Performances of the best-identified retrieval config
urations were validated with independent ground 
data, collected in real farm conditions, by sampling 
spatial heterogeneity of two fields with different sow
ing dates. The obtained results were more than satisfy
ing as demonstrated by accuracy and error metrics: R2 

of 0.79 and 0.84 and nRMSE of 19% and 15% for CCC 
and CNC, respectively. Scatterplots in Figure 3 show 
that data are well aligned on 1:1-line despite some 
overestimation for CCC and a slightly underestima
tion for CNC values greater than 6 g m−2 (60 kg ha−1). 
Validation results of CCC retrieval are comparable or 
even better than those reported in the literature, con
sidering both hybrid approach using S2 data for wheat 
monitoring (R2 = 0.61 and nRMSE = 26%; Delloye 
et al., 2018; R2 = 0.74 and nRMSE = 23%; Upreti et al., 
2019) and hyperspectral data from field spectroradio
metric measurements on heterogeneous grassland 
(R2 = 0.74 and nRMSE = 33%; Darvishzadeh et al., 
2008).

For what concerns CNC, the results are very pro
mising achieving a comparable performance when 
compared with traditional empirical approaches on 
multispectral data (RedEdge vegetation indices for 
maize: R2 = 0.79–0.87; Schlemmera et al., 2013) or 
more sophisticated combination of ML (PLSR for 
leaf nitrogen estimation) and RTM (for LAI) exploit
ing hyperspectral data (R2 = 0.85; S. Wang et al., 2021). 
Moreover, it is important to note that, with respect to 
other reported researches on maize (Crema et al., 
2020; S. S. Wang et al., 2021), this study was performed 
on real field condition with no artificial nitrogen varia
bility generated by different fertilisation levels. 
Therefore, the range of values is more limited and 
mainly related to natural spatial diversity within 
a typical cultivated field in the Mediterranean area. 
Other studies tested the hybrid approach exploiting 
the PROSAIL-PRO model. Berger et al. (2020) 
demonstrated retrieval feasibility using multitemporal 
field spectroradiometric measurements conducted 
along the entire crop season. The results showed 
a good correlation with field data, even though esti
mates from the developed hybrid nitrogen model 
resulted in more correlation with leaf and stalk nitro
gen (i.e. PNU; R2 = 0.84–0.86 and RMSE = 2.32– 
2.15 g m−2) than with only leaf nitrogen (i.e. CNC; 
R2 = 0.69–0.71 and RMSE = 5.8–5.5 g m−2), which was 
strongly overestimated for medium–high nitrogen 

values. It is important to remark that, in Berger et al. 
(2020) study, field CNC was estimated in a different 
way: organ-specific N% (i.e. plant part) was multiplied 
by the corresponding dry mass per unit of ground 
area, whereas, in this study, CNC estimations were 
obtained from LNC, determined from leaf disk mea
surements with fixed area, multiplied by correspond
ing measured LAI. Moreover, our field dataset was 
limited to the vegetative phase (V2/3 and V11/12; 
Ritchie et al., 1989) when neither senescence nor 
cobs, hence translocation processes, were present. 
The same approach was recently adopted by Verrelst 
et al. (2021) to produce the first landscape canopy 
nitrogen maps from PRISMA. In that study, a GPR 
and active learning techniques (Verrelst, Dethier et al., 
2016) were applied to the same dataset of Berger et al. 
(2020) in order to define a predictive CNC model to be 
applied to real spaceborne data. After active learning 
training (and including non-vegetated spectra), hybrid 
CNC model shows good performances (R2 = 0.69, 
RMSE = 3.42 g m−2 and nRMSE = 17%) but slightly 
worse than those obtained in our study (R2 = 0.84 and 
nRMSE = 15%). Finally, similar results to this study 
were obtained in Candiani et al. (2022) and Tagliabue 
et al. (2022), which share the same field protocol for 
CNC measurements, even though the latter adopted 
an active learning technique exploiting the available 
data to train the model.

Since PNU is the biophysical parameter of interest, 
used to perform “plant-based diagnosis” of crop 
N nutritional status using the concept of “critical 
N dilution curve” (Lemaire, 2021), CCC and CNC 
estimations were then compared to this variable to 
find the best BV-PNU model. CCC was strongly cor
related with PNU (R2 = 0.80). This can also be 
explained considering that only a specific crop 
(maize) was investigated in limited vegetative phase. 
The result confirms the validity of the approach pro
posed in the literature for wheat (Baret et al., 2007; 
Delloye et al., 2018; Guerif et al., 2007) and maize 
(Crema et al., 2020; Schlemmera et al., 2013). 
However, the comparison with reported examples is 
not straightforward: the studies show different CCC– 
PNU performances and regression parameters and 
confounding terminology on which part of plant 
nitrogen uptake is considered (e.g. entire plant, only 
leaves/canopy, etc.). These aspects highlight the 
empirical nature of CCC–PNU relation. This is also 
reported in other studies that underline how the chlor
ophyll-based relation with nitrogen is moderately 
strong across different species and dependent on 
crop status (Berger, Verrelst, Féret, Hank et al., 2020; 
Berger, Verrelst, Féret, Wang et al., 2020; Homolová 
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et al., 2013). Under this perspective, PNU estimated 
from CCC may not be transferable in different 
contexts.

On the other hand, the identified CNC–PNU rela
tion, besides slightly better (R2 = 0.82), appears to be 
physiologically based, being leaf-level nitrogen uptake 
a part of the entire plant nitrogen sink. As a matter of 
fact, plant nitrogen is strictly bound to proteins, while 
chlorophyll pigments represent only a part of it as 
reported in the work by Kokaly et al. (2009) and 
Berger et al. (2020). In our study, estimated CNC 
resulted, on average, about 30% of PNU in different 
analysed conditions (e.g. F1 and F2) which is compa
tible to what reported in the literature for maize 
hybrids (Bender et al., 2013; Berger, Verrelst, Féret, 
Hank et al., 2020). In this context, traditional agro
nomic experiment (available or to be specifically con
ducted) could be used to develop allometric relations 
between organ-specific (e.g. canopy level) and total 
plant N uptake. Assimilation of CNC in crop models 
can be considered a powerful alternative to estimate 
nitrogen partitioning in the plant (Weiss, Jacob et al., 
2020). These considerations candidate CNC as a more 
direct way to estimate PNU from spectral data without 
using empirical relation with another variable, such as 
chlorophyll. From an operational point of view, PNU 
estimated from CNC should be more robust and 
transferable across seasons and crops.

Nitrogen uptake mapping and implication for 
precision agriculture and crop monitoring

The best CNC hybrid model (GPR algorithm with PCA- 
20) was applied to 2020 PRISMA acquisitions for the 
generation of CNC maps on the study area. The relation 
between CNC and PNU was then used to map the spatial 
distribution of PNU in all the maize fields identified from 
the official common agricultural policy declarations 
(Figure 5). PNU maps for maize fields showed values 
within expected ranges, except for the peak, when PNU 
reaches values of about 180–200 kg ha−1 (Bender et al., 
2013; Berger, Verrelst, Féret, Hank et al., 2020).

Intra-field variability from PNU maps provides useful 
information related to crop development in early pheno
logical stages. This is more evident from the first 
PRISMA image acquired in late June, in which some 
maize fields with late sowing date show plants not yet 
in full development (Figure 5(c)). It is also interesting to 
discuss the temporal evolution of PNU estimation in 
relation to crop conditions and phenological develop
ment. Crop dynamics for each investigated field were 
reconstructed using the time-series analysis provided by 
“sen2rts” R package (L. Ranghetti et al., 2021). Analysis 
of MSAVI trend of each field, derived from S2 imagery, 
allowed estimating dates of important crop phases such 
as “start of season”, “peak of production” and “end of 

season”. PNU estimation for the two dates resulted in 
agreement with the expected nitrogen uptake trend from 
the plant, showing an increase before the reproductive 
stage up to the “peak of production” and a reduction 
afterwards due to senescence and translocation to repro
ductive organs (see boxplot diagrams in Figure 6).

PNU maps produced from spaceborne hyperspectral 
data (e.g. PRISMA) can be exploited for several applica
tions; in this context, user needs would determine what 
would be the most useful maps to consider. In case of 
precision farming workflows devoted to provide infor
mation to end-user for agro-management, an active 
interaction with farmers is expected. Based on sowing 
dates, farmers will exploit geo-products provided at 
time suitable to support fertilisation. Indeed, mapping 
the plant nitrogen spatial variability information within 
fields during leaf development stages (V3 – V13, Ritchie 
et al., 1989) is crucial for the generation of prescription 
maps; these data can be directly exploited by variable 
rate technology machinery for the application of site-
specific fertilisation (Crema et al., 2020).

In case of system devoted to monitor district (regional) 
crop condition or to estimate yield and grain quality 
(Busetto et al., 2017), the most usable proxies for final 
yield estimation are remote-sensing products related to 
plant nitrogen acquired close to the peak of season (about 
flowering; Wang et al., 2021). Crema et al. (2020) demon
strated that nitrogen nutritional index maps derived by 
remote-sensing products can be a good proxy to identify 
statistical difference in maize production among fields. 
This study showed that, for an operational nitrogen 
monitoring system, PNU information obtained from 
EO data at field level needs to be integrated by Sentinel- 
2 decametric data to identify specific crop stages.

Conclusions

In this study, an operational workflow for the mapping of 
the plant nitrogen uptake from space imaging spectro
scopy was developed. The work proposed a hybrid 
method, which combines the radiative transfer model 
PROSAIL-PRO and different machine learning regres
sion algorithms (GPR, NN, PLSR, SVR and RF), for the 
estimation of CCC and CNC as a future proxy for PNU 
mapping. The use of a hybrid method ensures the 
exportability of the procedures and a fast processing. 
Dimensionality reduction methods (PCA) were used to 
condense the spectral data into components and to ana
lyse their influence on the models. GPR algorithms 
trained with PCA-20 resulted as the most suitable models 
for both CCC and CNC. The independent validation 
against ground data showed good performances: 
R2 = 0.79, nRMSE = 19% for CCC and R2 = 0.84, 
nRMSE = 15% for CNC. These models were subse
quently applied to PRISMA-like images, acquired in 
2018 over the study area, and the relationship between 
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estimated values of CCC and CNC with measured values 
of PNU was investigated. PNU was slightly more corre
lated to CNC (R2 = 0.82) than CCC (R2 = 0.80). 
Therefore, the hybrid model of CNC and the CNC– 
PNU relation was applied to real PRISMA images, 
acquired in 2020 over the study area, for the generation 
of PNU maps.

Result obtained from this study show how crop 
traits, in particular maize traits, can be estimated 
from space using data from new-generation hyper
spectral sensors. The hybrid approach, which is fully 
independent from field measurements and datasets, 
led to good performance and accuracy during the 
validation phase against the test site data. Moreover, 
PNU was estimated within the expected ranges, and its 
dynamics resulted in agreement with the usual plant 
nitrogen uptake.
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