243 research outputs found

    Ab initio study of magnetism at the TiO2/LaAlO3 interface

    Get PDF
    In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO3_3. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc

    The Major Roles of DNA Polymerases Epsilon and Delta at the Eukaryotic Replication Fork Are Evolutionarily Conserved

    Get PDF
    Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen

    Get PDF
    This paper describes a novel method of sample preparation for the determination of trace concentrations of polycyclic aromatic hydrocarbons (PAHs) in high-boiling petroleum products. Limits of quantitation of the investigated PAHs in materials of this type range from tens of nanograms per kilogram to <20 μg/kg. The studies revealed that in order to separate most of interferences from the analytes without a significant loss of PAHs, it is necessary to use size exclusion chromatography as the first step of sample preparation, followed by adsorption using normal-phase liquid chromatography. The use of orthogonal separation procedure described in the paper allows the isolation of only a group of unsubstituted and substituted aromatic hydrocarbons with a specific range of molar mass. The lower the required limit of quantitation of PAHs, the larger is the scale of preparative liquid chromatography in both steps of sample preparation needed. The use of internal standard allows quantitative results to be corrected for the degree of recovery of PAHs during the sample preparation step. Final determination can be carried out using HPLC-FLD, GC-MS, or HPLC-UV–VIS/DAD. The last technique provides a degree of identification through the acquired UV–VIS spectra

    Expansion of a specific plasmodium falciparum PfMDR1 Haplotype in southeast Asia with increased substrate transport

    Get PDF
    Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.IMPORTANCE Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms.This work was funded by Portuguese National funds through the Foundation for Science and Technology (FCT) (project UIDB/50026/2020 and UIDP/50026/2020; fellowships PD/BD/127826/2016 to C.C., SFRH/BD/129769/2017 to M.S., SFRH/BD/145427/2019 to V.B., SFRH/BD/131540/2017 to R.S.P., and IF/00143/2015/CP1294/CT0001 to P.E.F. and contract funding to M.I.V. provided through DL 57/2016 [CRP]); by the projects NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000023, and NORTE 01-0145-FEDER-028178, supported by Norte Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the Euro pean Regional Development Fund (ERDF); by the Institute Merieux through “Starting” Mérieux Research Grant 2016 to M.I.V.; by the ESCMID to P.E.F. and by the NIH R01 AI109023 and R37AI50234 to D.A.F.info:eu-repo/semantics/publishedVersio

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Opposing Effects of Sirtuins on Neuronal Survival: SIRT1-Mediated Neuroprotection Is Independent of Its Deacetylase Activity

    Get PDF
    Background: Growing evidence suggests that sirtuins, a family of seven distinct NAD-dependent enzymes, are involved in the regulation of neuronal survival. Indeed, SIRT1 has been reported to protect against neuronal death, while SIRT2 promotes neurodegeneration. The effect of SIRTs 3–7 on the regulation of neuronal survival, if any, has yet to be reported. Methodology and Principal Findings: We examined the effect of expressing each of the seven SIRT proteins in healthy cerebellar granule neurons (CGNs) or in neurons induced to die by low potassium (LK) treatment. We report that SIRT1 protects neurons from LK-induced apoptosis, while SIRT2, SIRT3 and SIRT6 induce apoptosis in otherwise healthy neurons. SIRT5 is generally localized to both the nucleus and cytoplasm of CGNs and exerts a protective effect. In a subset of neurons, however, SIRT5 localizes to the mitochondria and in this case it promotes neuronal death. Interestingly, the protective effect of SIRT1 in neurons is not reduced by treatments with nicotinamide or sirtinol, two pharmacological inhibitors of SIRT1. Neuroprotection was also observed with two separate mutant forms of SIRT1, H363Y and H355A, both of which lack deacetylase activity. Furthermore, LK-induced neuronal death was not prevented by resveratrol, a pharmacological activator of SIRT1, at concentrations at which it activates SIRT1. We extended our analysis to HT-22 neuroblastoma cells which can be induced to die by homocysteic acid treatment. While the effects of most of the SIRT proteins were similar to that observed in CGNs, SIRT6 was modestly protective against homocysteic acid toxicity in HT-22 cells. SIRT5 was generally localized in th

    A Novel Framework for the Comparative Analysis of Biological Networks

    Get PDF
    Genome sequencing projects provide nearly complete lists of the individual components present in an organism, but reveal little about how they work together. Follow-up initiatives have deciphered thousands of dynamic and context-dependent interrelationships between gene products that need to be analyzed with novel bioinformatics approaches able to capture their complex emerging properties. Here, we present a novel framework for the alignment and comparative analysis of biological networks of arbitrary topology. Our strategy includes the prediction of likely conserved interactions, based on evolutionary distances, to counter the high number of missing interactions in the current interactome networks, and a fast assessment of the statistical significance of individual alignment solutions, which vastly increases its performance with respect to existing tools. Finally, we illustrate the biological significance of the results through the identification of novel complex components and potential cases of cross-talk between pathways and alternative signaling routes
    corecore