56 research outputs found
Equivalence Theorem and Probing the Electroweak Symmetry Breaking Sector
We examine the Lorentz non-invariance ambiguity in longitudinal weak-boson
scatterings and the precise conditions for the validity of the Equivalence
Theorem (ET). {\it Safe} Lorentz frames for applying the ET are defined, and
the intrinsic connection between the longitudinal weak-boson scatterings and
probing the symmetry breaking sector is analyzed. A universal precise
formulation of the ET is presented for both the Standard Model and the Chiral
Lagrangian formulated Electro-Weak Theories. It is shown that in electroweak
theories with strongly interacting symmetry breaking sector, the longitudinal
weak-boson scattering amplitude {\it under proper conditions} can be replaced
by the corresponding Goldstone-boson scattering amplitude in which all the
internal weak-boson lines and fermion loops are ignored.Comment: 20 pages, in LaTeX, to appear in Phys. Rev. D (1995). A few minor
corrections were made to clarify our viewpoint of the Equivalence Theorem and
compare our conclusion with those in the literatur
A simple inert model solves the little hierarchy problem and provides a dark matter candidate
We discuss a minimal extension to the standard model in which two singlet
scalar states that only interacts with the Higgs boson is added. Their masses
and interaction strengths are fixed by the two requirements of canceling the
one-loop quadratic corrections to the Higgs boson mass and providing a viable
dark matter candidate. Direct detection of the lightest of these new states in
nuclear scattering experiments is possible with a cross section within reach of
future experiments.Comment: Finite corrections included. Model modified. Conclusion unchange
Heavy-Higgs Lifetime at Two Loops
The Standard-Model Higgs boson with mass decays almost
exclusively to pairs of and bosons. We calculate the dominant two-loop
corrections of to the partial widths of these decays. In
the on-mass-shell renormalization scheme, the correction factor is found to be
, where the second term is the
one-loop correction. We give full analytic results for all divergent two-loop
Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to
high precision using numerical techniques. We find agreement with a previous
numerical analysis. The above correction factor is also in line with a recent
lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures
is also available via WWW at
http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g
Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state
For processes with gauge bosons in the final state we show how to
continuously connect with a single Born-improved amplitude the resonant region,
where resummation effects are important, with the asymptotic region far away
from the resonance, where the amplitude must reduce to its tree-level form.
While doing so all known field-theoretical constraints are respected, most
notably gauge-invariance, unitarity and the equivalence theorem. The
calculations presented are based on the process , mediated by a
possibly resonant Higgs boson; this process captures all the essential
features, and can serve as a prototype for a variety of similar calculations.
By virtue of massive cancellations the resulting closed expressions for the
differential and total cross-sections are particularly compact.Comment: 23 pages, Latex, 4 Figures, uses axodra
Two-loop corrections to the fermionic decay rates of the Higgs boson
We calculate the dominant two-loop
electroweak corrections to the fermi\-onic decay widths of a heavy Higgs boson
in the Standard Model. Use of the Goldstone-boson equivalence theorem reduces
the problem to one involving only the physical Higgs boson and the
Goldstone bosons and of the unbroken theory. The two-loop
corrections are opposite in sign to the one-loop electroweak corrections,
exceed the one-loop corrections in magnitude for , and
increase in relative magnitude as for larger values of . We
conclude that the perturbation expansion in powers of breaks down
for . We discuss briefly the QCD and the complete
one-loop electroweak corrections to , and
comment on the validity of the equivalence theorem. Finally we note how a very
heavy Higgs boson could be described in a phenomenological manner.Comment: 24 pages, RevTeX file, 4 figures in a separate compressed uuencoded
Postscript file or available by mail on request. Fig. 1 not included see
Figs. 1, 2 in Phys. Rev. D 48, 1061 (1993
Independent susceptibility markers for atrial fibrillation on chromosome 4q25
Background-: Genetic variants on chromosome 4q25 are associated with atrial fibrillation (AF). We sought to determine whether there is more than 1 susceptibility signal at this locus. Methods and results-: Thirty-four haplotype-tagging single-nucleotide polymorphisms (SNPs) at the 4q25 locus were genotyped in 790 case and 1177 control subjects from Massachusetts General Hospital and tested for association with AF. We replicated SNPs associated with AF after adjustment for the most significantly associated SNP in 5066 case and 30 661 referent subjects from the German Competence Network for Atrial Fibrillation, Atherosclerosis Risk In Communities Study, Cleveland Clinic Lone AF Study, Cardiovascular Health Study, and Rotterdam Study. All subjects were of European ancestry. A multimarker risk score composed of SNPs that tagged distinct AF susceptibility signals was constructed and tested for association with AF, and all results were subjected to meta-analysis. The previously reported SNP, rs2200733, was most significantly associated with AF (minor allele odds ratio 1.80, 95% confidence interval 1.50 to 2.15, P=1.2×10) in the discovery sample. Adjustment for rs2200733 genotype revealed 2 additional susceptibility signals marked by rs17570669 and rs3853445. A graded risk of AF was observed with an increasing number of AF risk alleles at SNPs that tagged these 3 susceptibility signals. Conclusions-: We identified 2 novel AF susceptibility signals on chromosome 4q25. Consideration of multiple susceptibility signals at chromosome 4q25 identifies individuals with an increased risk of AF and may localize regulatory elements at the locus with biological relevance in the pathogenesis of AF
Prospects for e+e- physics at Frascati between the phi and the psi
We present a detailed study, done in the framework of the INFN 2006 Roadmap,
of the prospects for e+e- physics at the Frascati National Laboratories. The
physics case for an e+e- collider running at high luminosity at the phi
resonance energy and also reaching a maximum center of mass energy of 2.5 GeV
is discussed, together with the specific aspects of a very high luminosity
tau-charm factory. Subjects connected to Kaon decay physics are not discussed
here, being part of another INFN Roadmap working group. The significance of the
project and the impact on INFN are also discussed. All the documentation
related to the activities of the working group can be found in
http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning
Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data.NWORubicon 019.201SG.022Advanced Behavioural Research MethodsHealth and Well-bein
- …