209 research outputs found

    Virally induced modulation of murine IgG antibody subclasses.

    Full text link
    The isotypic distribution of murine IgG was examined after infection with several viruses. The results indicate that when a hypergammaglobulinemia was induced by the infection, it was restricted to the IgG2a and, to a lesser extent, to the IgG2b subclasses. In addition, when mice were infected with some viruses concomitantly with the immunization with a soluble protein antigen, a modification in the isotypic distribution of antiprotein antibodies was observed, with a preferential production of IgG2a. These observations indicate that viral infections can actively influence the switch of Igs and selectively stimulate the production of the IgG2a subclass

    FK 506 pre-treatment is associated with reduced levels of tumor necrosis factor and interleukin 6 following hepatic ischemia/reperfusion

    Get PDF
    Using a rat model, the effect of pre-treatment with FK 506 on hepatic ischemia/reperfusion injury was investigated. All control animals died within 72 h of the ischemia/reperfusion injury. Pre-treatment of the animals with FK 506 (0.3 mg/kg in 0.5 ml saline) administered intravenously improved survival. The most striking protection against fatal ischemia/reperfusion injury was achieved in rats that were given FK 506 6 and 24 h prior to the induction of the hepatic ischemic insult (70% and 80% 10-day survival rates, respectively). The hepatoprotective effect of FK 506 was assessed further in a second experiment in which the serum levels of tumor necrosis factor (TNF) and interleukin 6 (IL-6) were measured. These results suggest that a 60-min period of hepatic ischemia and subsequent reperfusion triggers the release of both TNF and IL-6, and that FK 506 pre-treatment (6 h before the ischemic episode) significantly inhibits the production and/or release of these two cytokines compared to untreated controls. These data provide additional information concerning the immunosuppressive and hepatoprotective activities of FK 506. Based upon these data, it is probable that FK 506 attenuates hepatic ischemia/reperfusion injury, at least in part, by reducing TNF and IL-6 levels. © 1993 Elsevier Scientific Publishers Ireland Ltd. All rights reserved

    B cell depletion reduces the development of atherosclerosis in mice

    Get PDF
    B cell depletion significantly reduces the burden of several immune-mediated diseases. However, B cell activation has been until now associated with a protection against atherosclerosis, suggesting that B cell–depleting therapies would enhance cardiovascular risk. We unexpectedly show that mature B cell depletion using a CD20-specific monoclonal antibody induces a significant reduction of atherosclerosis in various mouse models of the disease. This treatment preserves the production of natural and potentially protective anti–oxidized low-density lipoprotein (oxLDL) IgM autoantibodies over IgG type anti-oxLDL antibodies, and markedly reduces pathogenic T cell activation. B cell depletion diminished T cell–derived IFN-γ secretion and enhanced production of IL-17; neutralization of the latter abrogated CD20 antibody–mediated atheroprotection. These results challenge the current paradigm that B cell activation plays an overall protective role in atherogenesis and identify new antiatherogenic strategies based on B cell modulation

    Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP), we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung.</p> <p>Methods</p> <p>Healthy volunteers (n = 20) and patients with idiopathic PAP (n = 20) underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress.</p> <p>Results</p> <p>Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients.</p> <p>Conclusion</p> <p>Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.</p

    NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host–microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation

    Polymorphisms of −174G>C and −572G>C in the Interleukin 6 (IL-6) Gene and Coronary Heart Disease Risk: A Meta-Analysis of 27 Research Studies

    Get PDF
    OBJECTIVE: Elevated serum IL-6 level is a risk factor for coronary heart disease (CHD). The -174 G>C and -572 G>C polymorphisms in the IL-6 gene have previously been shown to modulate IL-6 levels. But the association between the -174 G>C and -572 G>C polymorphisms and the risk of CHD is still unclear. A meta-analysis of all eligible studies was carried out to clarify the role of IL-6 gene polymorphisms in CHD. METHODS AND RESULTS: PubMed, EMBASE, Vip, CNKI and CBM-disc were searched for eligible articles in English and Chinese that were published before October 2010. 27 studies involving 11580 patients with CHD and 17103 controls were included. A meta-analysis was performed for the included articles using the RevMan 5.0 and Stata 10.0 softwares. Overall, the -174 C allele was not significantly associated with CHD risk (ORs = 1.04, 95%CI = 0.98 to 1.10) when compared with the -174 G allele in the additive model, and meta-analysis under other genetic models (dominant, recessive, CC versus GG, and GC versus GG) also did not reveal any significant association. On the contrary, the -572 C allele was associated with a decreased risk of CHD when compared with the -572 G allele (ORs = 0.79, 95%CI = 0.68 to 0.93). Furthermore, analyses under the recessive model (ORs = 0.69, 95% = 0.59 to 0.80) and the allele contrast model (genotype of CC versus GG, ORs = 0.49, 95% = 0.35 to 0.70) yielded similar results. However, statistical significance was not found when the meta-analysis was restricted to studies focusing on European populations, studies with large sample size, and cohort studies by using subgroup analysis. CONCLUSIONS: The -174 G>C polymorphism in the IL-6 gene is not significantly associated with increased risks of CHD. However, The -572 G>C polymorphism may contribute to CHD development. Future investigations with better study design and large number of subjects are needed
    corecore