39 research outputs found

    The Power of Low Frequencies: Faraday Tomography in the sub-GHz regime

    Full text link
    Faraday tomography, the study of the distribution of extended polarized emission by strength of Faraday rotation, is a powerful tool for studying magnetic fields in the interstellar medium of our Galaxy and nearby galaxies. The strong frequency dependence of Faraday rotation results in very different observational strengths and limitations for different frequency regimes. I discuss the role these effects take in Faraday tomography below 1 GHz, emphasizing the 100-200 MHz band observed by the Low Frequency Array and the Murchison Widefield Array. With that theoretical context, I review recent Faraday tomography results in this frequency regime, and discuss expectations for future observations.Comment: 12 pages, 4 figures. Accepted for publication in Galaxies as part of the special issue "The Power of Faraday Tomography

    Faraday Rotation of Extended Emission as a Probe of the Large-Scale Galactic Magnetic Field

    Full text link
    The Galactic magnetic field is an integral constituent of the interstellar medium (ISM), and knowledge of its structure is crucial to understanding Galactic dynamics. The Rotation Measures (RM) of extragalactic (EG) sources have been the basis of comprehensive Galactic magnetic field models. Polarised extended emission (XE) is also seen along lines of sight through the Galactic disk, and also displays the effects of Faraday rotation. Our aim is to investigate and understand the relationship between EG and XE RMs near the Galactic plane, and to determine how the XE RMs, a hitherto unused resource, can be used as a probe of the large-scale Galactic magnetic field. We used polarisation data from the Canadian Galactic Plane Survey (CGPS), observed near 1420 MHz with the Dominion Radio Astrophysical Observatory (DRAO) Synthesis Telescope. We calculated RMs from a linear fit to the polarisation angles as a function of wavelength squared in four frequency channels, for both the EG sources and the XE. Across the CGPS area, 55∘<ℓ<193∘,−3∘<b<5∘55^{\circ} < {\ell} <193^{\circ}, -3^{\circ} < b < 5^{\circ}, the RMs of the XE closely track the RMs of the EG sources, with XE RMs about half the value of EG-source RMs. The exceptions are places where large local HII complexes heavily depolarise more distant emission. We conclude that there is valuable information in the XE RM dataset. The factor of 2 between the two types of RM values is close to that expected from a Burn slab model of the ISM. This result indicates that, at least in the outer Galaxy, the EG and XE sources are likely probing similar depths, and that the Faraday rotating medium and the synchrotron emitting medium have similar variation with galactocentric distance.Comment: Accepted to Galaxies, March 22, 201

    Statistical properties of dwarf novae-type cataclysmic variables: the outburst catalogue

    Get PDF
    The outburst catalogue contains a wide variety of observational properties for 722 dwarf nova (DN)-type cataclysmic variables (CVs) and 309 CVs of other types from the Catalina Real-time Transient Survey. In particular, it includes the apparent outburst and quiescent V-band magnitudes, duty cycles, limits on the recurrence time, upper and lower limits on the distance and absolute quiescent magnitudes, colour information, orbital parameters and X-ray counterparts. These properties were determined by means of a classification script presented in this paper. The DN in the catalogue show a correlation between the outburst duty cycle and the orbital period (and outburst recurrence time), as well as between the quiescent absolute magnitude and the orbital period (and duty cycle). This is the largest sample of DN properties collected to date. Besides serving as a useful reference for individual systems and a means of selecting objects for targetted studies, it will prove valuable for statistical studies that aim to shed light on the formation and evolution of cataclysmic variables

    Sampling the Faraday rotation sky of TNG50: Imprint of the magnetised circumgalactic medium around Milky Way-like galaxies

    Full text link
    Faraday rotation measure (RM) is arguably the most practical observational tracer of magnetic fields in the diffuse circumgalactic medium (CGM). We sample synthetic Faraday rotation skies of Milky Way-like galaxies in TNG50 of the IllustrisTNG project by placing an observer inside the galaxies at a solar circle-like position. Our synthetic RM grids emulate specifications of current and upcoming surveys; the NRAO VLA Sky Survey (NVSS), the Polarisation Sky Survey of the Universe's Magnetism (POSSUM), and a future Square Kilometre Array (SKA1-mid) polarisation survey. It has been suggested that magnetic fields regulate the survival of high-velocity clouds. However, there is only a small number of observational detections of magnetised clouds thus far. In the first part of the paper, we test conditions for the detection of magnetised circumgalactic clouds. Based on the synthetic RM samplings of clouds in the simulations, we predict upcoming polarimetric surveys will open opportunities for the detection of even low-mass and distant clouds. In the second part of the paper, we investigate the imprint of the CGM in the all-sky RM distribution. We test whether the RM variation produced by the CGM is correlated with global galaxy properties, such as distance to a satellite, specific star formation rate, neutral hydrogen covering fraction, and accretion rate to the supermassive black hole. We argue that the observed fluctuation in the RM measurements on scales less than 1 degree, which has been considered an indication of intergalactic magnetic fields, might in fact incorporate a significant contribution of the Milky Way CGM.Comment: 18 pages, 11 figures, Accepted to MNRA

    The evolutionary state of Miras with changing pulsation periods

    Full text link
    Context: Miras are long-period variables thought to be in the asymptotic giant branch (AGB) phase of evolution. In about one percent of known Miras, the pulsation period is changing. It has been speculated that this changing period is the consequence of a recent thermal pulse in these stars. Aims: We aim to clarify the evolutionary state of these stars, and to determine in particular whether or not they are in the thermally-pulsing (TP-)AGB phase. Methods: One important piece of information that has been neglected so far when determining the evolutionary state is the presence of the radio-active s-process element technetium (Tc). We obtained high-resolution, high signal-to-noise-ratio optical spectra of a dozen prominent Mira variables with changing pulsation period to search for this indicator of TPs and dredge-up. We also use the spectra to measure lithium (Li) abundances. Furthermore, we establish the evolutionary states of our sample stars by means of their present-day periods and luminosities. Results: Among the twelve sample stars observed in this programme, five were found to show absorption lines of Tc. BH Cru is found to be a carbon-star, its period increase in the past decades possibly having stopped by now. We report a possible switch in the pulsation mode of T UMi from Mira-like to semi-regular variability in the past two years. R Nor, on the other hand, is probably a fairly massive AGB star, which could be true for all meandering Miras. Finally, we assign RU Vul to the metal-poor thick disk with properties very similar to the short-period, metal-poor Miras. Conclusions: We conclude that there is no clear correlation between period change class and Tc presence. The stars that are most likely to have experienced a recent TP are BH Cru and R Hya, although their rates of period change are quite different.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in A&

    The Global Magneto-Ionic Medium Survey (GMIMS): The brightest polarized region in the Southern sky at 75cm and its implications for Radio Loop II

    Get PDF
    Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300 to 480 MHz at 81 arcmin resolution, we reveal the brightest region in the Southern polarized sky at these frequencies. The region, G150-50, covers nearly 20deg2^2, near (l,b)~(150 deg,-50 deg). Using GMIMS-LBS and complementary data at higher frequencies (~0.6--30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150-50 is both coherent and primarily in the plane of the sky, and indications that the region is associated with Radio Loop II. The Faraday depth spectra across G150-50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU-fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line-of-sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150-50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150-50.Comment: 25 pages, 14 figures. Accepted for publication in MNRA

    The Rapid ASKAP Continuum Survey III: Spectra and Polarisation In Cutouts of Extragalactic Sources (SPICE-RACS) first data release

    Get PDF
    The Australian SKA Pathfinder (ASKAP) radio telescope has carried out a survey of the entire Southern Sky at 887.5 MHz. The wide area, high angular resolution, and broad bandwidth provided by the low-band Rapid ASKAP Continuum Survey (RACS-low) allow the production of a next-generation rotation measure (RM) grid across the entire Southern Sky. Here we introduce this project as Spectral and Polarisation in Cutouts of Extragalactic sources from RACS (SPICE-RACS). In our first data release, we image 30 RACS-low fields in Stokes I, Q, U at 25" angular resolution, across 744-1032 MHz with 1 MHz spectral resolution. Using a bespoke, highly parallelised, software pipeline we are able to rapidly process wide-area spectro-polarimetric ASKAP observations. Notably, we use `postage stamp' cutouts to assess the polarisation properties of 105912 radio components detected in total intensity. We find that our Stokes Q and U images have an rms noise of ∼ 80 μJy PSF-1, and our correction for instrumental polarisation leakage allows us to characterise components with ≳ 1% polarisation fraction over most of the field of view. We produce a broadband polarised radio component catalogue that contains 5818 RM measurements over an area of ∼ 1300 deg2 with an average error in RM of 1.6+1.1-1.0 rad m-2, and an average linear polarisation fraction 3.4+3.0-1.6%. We determine this subset of components using the conditions that the polarised signal-to-noise ratio is > 8, the polarisation fraction is above our estimated polarised leakage, and the Stokes I spectrum has a reliable model. Our catalogue provides an areal density of 4±2 RMs deg-2; an increase of ∼ 4 times over the previous state-of-the-art (Taylor, Stil, Sunstrum 2009, ApJ, 702, 1230). Meaning that, having used just 3% of the RACS-low sky area, we have produced the 3rd largest RM catalogue to date. This catalogue has broad applications for studying astrophysical magnetic fields; notably revealing remarkable structure in the Galactic RM sky. We will explore this Galactic structure in a follow-up paper. We will also apply the techniques described here to produce an all-Southern-sky RM catalogue from RACS observations. Finally, we make our catalogue, spectra, images, and processing pipeline publicly available

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The Power of Low Frequencies: Faraday Tomography in the Sub-GHz Regime

    No full text
    Faraday tomography, the study of the distribution of extended polarized emission by strength of Faraday rotation, is a powerful tool for studying magnetic fields in the interstellar medium of our Galaxy and nearby galaxies. The strong frequency dependence of Faraday rotation results in very different observational strengths and limitations for different frequency regimes. I discuss the role these effects take in Faraday tomography below 1 GHz, emphasizing the 100&#8315;200 MHz band observed by the Low Frequency Array and the Murchison Widefield Array. With that theoretical context, I review recent Faraday tomography results in this frequency regime, and discuss expectations for future observations
    corecore