9,261 research outputs found

    PSACNN: Pulse Sequence Adaptive Fast Whole Brain Segmentation

    Full text link
    With the advent of convolutional neural networks~(CNN), supervised learning methods are increasingly being used for whole brain segmentation. However, a large, manually annotated training dataset of labeled brain images required to train such supervised methods is frequently difficult to obtain or create. In addition, existing training datasets are generally acquired with a homogeneous magnetic resonance imaging~(MRI) acquisition protocol. CNNs trained on such datasets are unable to generalize on test data with different acquisition protocols. Modern neuroimaging studies and clinical trials are necessarily multi-center initiatives with a wide variety of acquisition protocols. Despite stringent protocol harmonization practices, it is very difficult to standardize the gamut of MRI imaging parameters across scanners, field strengths, receive coils etc., that affect image contrast. In this paper we propose a CNN-based segmentation algorithm that, in addition to being highly accurate and fast, is also resilient to variation in the input acquisition. Our approach relies on building approximate forward models of pulse sequences that produce a typical test image. For a given pulse sequence, we use its forward model to generate plausible, synthetic training examples that appear as if they were acquired in a scanner with that pulse sequence. Sampling over a wide variety of pulse sequences results in a wide variety of augmented training examples that help build an image contrast invariant model. Our method trains a single CNN that can segment input MRI images with acquisition parameters as disparate as T1T_1-weighted and T2T_2-weighted contrasts with only T1T_1-weighted training data. The segmentations generated are highly accurate with state-of-the-art results~(overall Dice overlap=0.94=0.94), with a fast run time~(\approx 45 seconds), and consistent across a wide range of acquisition protocols.Comment: Typo in author name corrected. Greves -> Grev

    Connecting protein and mRNA burst distributions for stochastic models of gene expression

    Full text link
    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

    Mesoscopic threshold detectors: Telegraphing the size of a fluctuation

    Full text link
    We propose a two-terminal method to measure shot noise in mesoscopic systems based on an instability in the current-voltage characteristic of an on-chip detector. The microscopic noise drives the instability, which leads to random switching of the current between two values, the telegraph process. In the Gaussian regime, the shot noise power driving the instability may be extracted from the I-V curve, with the noise power as a fitting parameter. In the threshold regime, the extreme value statistics of the mesoscopic conductor can be extracted from the switching rates, which reorganize the complete information about the current statistics in an indirect way, "telegraphing" the size of a fluctuation. We propose the use of a quantum double dot as a mesoscopic threshold detector.Comment: 9 pages, 7 figures, published versio

    Spatial search by quantum walk

    Full text link
    Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order sqrt(N) for d>2, and in time of order sqrt(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous time quantum walk on a graph. The case of the complete graph gives the continuous time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that sqrt(N) speedup can also be achieved on the hypercube. We show that full sqrt(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order sqrt(N) poly(log N), and in d<4, the algorithm does not provide substantial speedup.Comment: v2: 12 pages, 4 figures; published version, with improved arguments for the cases where the algorithm fail

    Detection of pediatric upper extremity motor activity and deficits with accelerometry

    Get PDF
    Importance: Affordable, quantitative methods to screen children for developmental delays are needed. Motor milestones can be an indicator of developmental delay and may be used to track developmental progress. Accelerometry offers a way to gather real-world information about pediatric motor behavior. Objective: To develop a referent cohort of pediatric accelerometry from bilateral upper extremities (UEs) and determine whether movement can accurately distinguish those with and without motor deficits. Design, Setting, and Participants: Children aged 0 to 17 years participated in a prospective cohort from December 8, 2014, to December 29, 2017. Children were recruited from Ranken Jordan Pediatric Bridge Hospital, Maryland Heights, Missouri, and Washington University School of Medicine in St Louis, St Louis, Missouri. Typically developing children were included as a referent cohort if they had no history of motor or neurological deficit; consecutive sampling and matching ensured equal representation of sex and age. Children with diagnosed asymmetric motor deficits were included in the motor impaired cohort. Exposures: Bilateral UE motor activity was measured using wrist-worn accelerometers for a total of 100 hours in 25-hour increments. Main Outcomes and Measures: To characterize bilateral UE motor activity in a referent cohort for the purpose of detecting irregularities in the future, total activity and the use ratio between UEs were used to describe typically developing children. Asymmetric impairment was classified using the mono-arm use index (MAUI) and bilateral-arm use index (BAUI) to quantify the acceleration of unilateral movements. Results: A total of 216 children enrolled, and 185 children were included in analysis. Of these, 156 were typically developing, with mean (SD) age 9.1 (5.1) years and 81 boys (52.0%). There were 29 children in the motor impaired cohort, with mean (SD) age 7.4 (4.4) years and 16 boys (55.2%). The combined MAUI and BAUI (mean [SD], 0.86 [0.005] and use ratio (mean [SD], 0.90 [0.008]) had similar F1 values. The area under the curve was also similar between the combined MAUI and BAUI (mean [SD], 0.98 [0.004]) and the use ratio (mean [SD], 0.98 [0.004]). Conclusions and Relevance: Bilateral UE movement as measured with accelerometry may provide a meaningful metric of real-world motor behavior across childhood. Screening in early childhood remains a challenge; MAUI may provide an effective method for clinicians to measure and visualize real-world motor behavior in children at risk for asymmetrical deficits
    corecore