With the advent of convolutional neural networks~(CNN), supervised learning
methods are increasingly being used for whole brain segmentation. However, a
large, manually annotated training dataset of labeled brain images required to
train such supervised methods is frequently difficult to obtain or create. In
addition, existing training datasets are generally acquired with a homogeneous
magnetic resonance imaging~(MRI) acquisition protocol. CNNs trained on such
datasets are unable to generalize on test data with different acquisition
protocols. Modern neuroimaging studies and clinical trials are necessarily
multi-center initiatives with a wide variety of acquisition protocols. Despite
stringent protocol harmonization practices, it is very difficult to standardize
the gamut of MRI imaging parameters across scanners, field strengths, receive
coils etc., that affect image contrast. In this paper we propose a CNN-based
segmentation algorithm that, in addition to being highly accurate and fast, is
also resilient to variation in the input acquisition. Our approach relies on
building approximate forward models of pulse sequences that produce a typical
test image. For a given pulse sequence, we use its forward model to generate
plausible, synthetic training examples that appear as if they were acquired in
a scanner with that pulse sequence. Sampling over a wide variety of pulse
sequences results in a wide variety of augmented training examples that help
build an image contrast invariant model. Our method trains a single CNN that
can segment input MRI images with acquisition parameters as disparate as
T1-weighted and T2-weighted contrasts with only T1-weighted training
data. The segmentations generated are highly accurate with state-of-the-art
results~(overall Dice overlap=0.94), with a fast run time~(≈ 45
seconds), and consistent across a wide range of acquisition protocols.Comment: Typo in author name corrected. Greves -> Grev