1,172 research outputs found
BPA-Induced Deregulation of Epigenetic Patterns: Effects on Female Zebrafish Reproduction
Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks. Effects on oocyte growth and maturation, autophagy and apoptosis processes, histone modifications, and DNA methylation were assessed by Real-Time PCR (qPCR), histology, and chromatin immunoprecipitation combined with qPCR analysis (ChIP-qPCR). The results showed that 5 ÎŒg/L BPA down-regulated oocyte maturation-promoting signals, likely through changes in the chromatin structure mediated by histone modifications, and promoted apoptosis in mature follicles. These data indicate that the negative effects of BPA on the female reproductive system may be due to its upstream ability to deregulate epigenetic mechanism
Luminal Ca2+ Regulation of Single Cardiac Ryanodine Receptors: Insights Provided by Calsequestrin and its Mutants
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)âlinked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 ÎŒM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below âŒ0.5 mM
Knockout of the Glucocorticoid Receptor Impairs Reproduction in Female Zebrafish
none8The pleiotropic effects of glucocorticoids in metabolic, developmental, immune and stress response processes have been extensively investigated; conversely, their roles in reproduction are still less documented. It is well known that stress or long-lasting therapies can cause a strong increase in these hormones, negatively affecting reproduction. Moreover, the need of glucocorticoid (GC) homeostatic levels is highlighted by the reduced fertility reported in the zebrafish glucocorticoid receptor mutant (nr3c1ia30/ia30) line (hereafter named gr-/-). Starting from such evidence, in this study, we have investigated the role of glucocorticoid receptor (Gr) in the reproduction of female zebrafish. Key signals orchestrating the reproductive process at the brain, liver, and ovarian levels were analyzed using a multidisciplinary approach. An impairment of the kiss-GnRH system was observed at the central level in (gr-/-) mutants as compared to wild-type (wt) females while, in the liver, vitellogenin (vtg) mRNA transcription was not affected. Changes were instead observed in the ovary, particularly in maturing and fully grown follicles (classes III and IV), as documented by the mRNA levels of signals involved in oocyte maturation and ovulation. Follicles isolated from gr-/- females displayed a decreased level of signals involved in the acquisition of competence and maturation, causing a reduction in ovulation with respect to wt females. Fourier transform infrared imaging (FTIRI) analysis of gr-/- follicle cytoplasm showed major changes in macromolecule abundance and distribution with a clear alteration of oocyte composition. Finally, differences in the molecular structure of the zona radiata layer of gr-/- follicles are likely to contribute to the reduced fertilization rate observed in mutants.openMaradonna, Francesca; Gioacchini, Giorgia; Notarstefano, Valentina; Fontana, Camilla Maria; Citton, Filippo; Dalla Valle, Luisa; Giorgini, Elisabetta; Carnevali, OlianaMaradonna, Francesca; Gioacchini, Giorgia; Notarstefano, Valentina; Fontana, Camilla Maria; Citton, Filippo; Dalla Valle, Luisa; Giorgini, Elisabetta; Carnevali, Olian
Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only
This study investigates the functional role of calsequestrin 2 (CASQ2) in both fast-twitch and slow-twitch skeletal muscles by using CASQ2 12/ 12 mice; CASQ2 is expressed throughout life in slow-twitch muscles, but only in the developmental and neonatal stages in fast-twitch muscles. CASQ2 12/ 12 causes increase in calsequestrin 1 (CASQ1) expression, but without functional changes in both muscle types. CASQ2 12/ 12 mice have ultrastructural changes in fast-twitch muscles only, i.e., formation of pentads and stacks in the sarcoplasmic reticulum
SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis
Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole- exome sequencing data
Background: Detecting somatic mutations in whole exome sequencing data of cancer samples has become a popular approach for profiling cancer development, progression and chemotherapy resistance. Several studies have proposed software packages, filters and parametrizations. However, many research groups reported low concordance among different methods. We aimed to develop a pipeline which detects a wide range of single nucleotide mutations with high validation rates. We combined two standard tools â Genome Analysis Toolkit (GATK) and MuTect â to create the GATK-LODN method. As proof of principle, we applied our pipeline to exome sequencing data of hematological (Acute Myeloid and Acute Lymphoblastic Leukemias) and solid (Gastrointestinal Stromal Tumor and Lung Adenocarcinoma) tumors. We performed experiments on simulated data to test the sensitivity and specificity of our pipeline.
Results: The software MuTect presented the highest validation rate (90 %) for mutation detection, but limited number of somatic mutations detected. The GATK detected a high number of mutations but with low specificity. The GATK-LODN increased the performance of the GATK variant detection (from 5 of 14 to 3 of 4 confirmed variants), while preserving mutations not detected by MuTect. However, GATK-LODN filtered more variants in the hematological samples than in the solid tumors. Experiments in simulated data demonstrated that GATK-LODN increased both specificity and sensitivity of GATK results.
Conclusion: We presented a pipeline that detects a wide range of somatic single nucleotide variants, with good validation rates, from exome sequencing data of cancer samples. We also showed the advantage of combining standard algorithms to create the GATK-LODN method, that increased specificity and sensitivity of GATK results. This pipeline can be helpful in discovery studies aimed to profile the somatic mutational landscape of cancer genomes
Effect of Dietary Organic Acids and Botanicals on Metabolic Status and Milk Parameters in MidâLateLactating Goats
The microencapsulated mixture of organic acids and pure botanicals (OA/PB) has never been evaluated in goats. The aim of thisstudy was to extend the analysis to midâlatelactating dairy goats, evaluating the effects of OA/PB supplementation on the metabolic status, milk bacteriological and composition characteristics, and milk yield. Eighty midâlatelactating Saanen goatswere ran-domly assigned to two groups: one group was fed the basal total balanced ration (TMR) (CRT; n=40) and the other was fed a diet that wasTMR supplemented with 10 g/head of OA/PB (TRT; n=40) for 54 days during the summer period. The temperatureâhumidity index (THI) was recorded hourly. On days T0, T27, and T54, the milk yield was recorded,and blood and milk samples were collected during the morning milking. A linear mixed model was used, considering the fixed effects: diet, time,and their interaction. The THI data (mean ±SD: 73.5 ±3.83) show that the goats did not endure heat stress. The blood parameters fell within the normal range, confirming that their meta-bolic status was not negatively influenced by OA/PB supplementation. OA/PB increased the milk fat content (p=0.04) and milk coagulation index (p=0.03),which areeffects that are looked on as favorable by the dairy industry in relation to cheese production
ACUTE LEUKEMIA AND LATENT TUBERCULOSIS INFECTION IN ITALY: QUANTIFERON-TB TEST SCREENING IN A LOW TUBERCULOSIS INCIDENCE COUNTRY
background: identification of latent tuberculosis infection (LTBI) is a critical step of tuberculosis surveillance, especially in low-incidence countries. however, it is limited to situations with a higher probability of developing active disease, e.g., patients with hematological malignancies. according to guidelines, in TB non-endemic countries, no clear screening program is established at diagnosis for patients with acute leukemia (AL).
the primary endpoint of this study was to establish the prevalence of LTBI in patients with a diagnosis of AL using quanti FERON (QFT)-TB. Secondarily, radiological and clinical features driving the increased risk of LTBI were evaluated.
methods: QFT-TB screening was performed before induction or consolidation in all patients with AL (myeloid and lymphoid) treated at our Institution between october 2019 and august 2023.
results: we accrued 62 patients, of whom 7 (11,3%) tested positive, without any symptoms or signs of active TB, and 2 (3,2%) resulted as indeterminate. all positive patients started prophylaxis with isoniazid 300 mg daily, while patients whose test was indeterminate did not receive any prophylaxis. active TB was excluded by imaging, as well as microscopic, cultural, and molecular examination on bronchoalveolar lavage if signs of any infection were detected. during the 46 months of observation, no patients developed TB reactivation.
conclusions: despite the low sample size, 1/10 of our patients had prior TB exposure, hinting that LTBI could be more common than expected in italy. this finding suggests implementing TB screening in the pre-treatment setting, particularly at a time when more active treatments are becoming available also for patients ineligible for intensive chemotherapy
Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas
<p>Abstract</p> <p>Background</p> <p>Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC.</p> <p>Methods</p> <p>Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs.</p> <p>Results</p> <p>EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are sensitive to lapatinib as a single agent. Molecular mechanisms were confirmed by western blot analysis.</p> <p>Conclusion</p> <p>These data demonstrate that EGFR and HER2 pathways are suitable therapeutic targets for BTCs. The combination of gemcitabine with drugs targeting these pathways gives encouraging results and further clinical studies could be warranted.</p
- âŠ