3,710 research outputs found

    Electronic Devices Based on Two-Dimensional Quantum Materials

    Full text link
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutors: Marius V. Costache, Juan F. SierraOne of the central problems in graphene spintronics is the efficient injection and detection of spins in mesoscopic devices. To date, most of the studies in graphene spin devices use spin-sensitive contacts of Cobalt for injection and detection. However, due to its magnetic properties, Cobalt is prone to form magnetic domains and inhomogeneities, which makes it hard to control its magnetization orientation. This memoir presents a novel approach for spin injection and detection in graphene by material engineering of the ferromagnetic contacts. We have fabricated spin injector/detector contacts of a bilayer of Cobalt and Permalloy (NiFe). Our results demonstrate that Permalloy softens the magnetization reversal of the Cobalt/Permalloy bilayer while the insertion of a very thin layer of the Cobalt layer is essential for efficient spin injection/detection into graphen

    A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation

    Full text link
    We present a nodal Discontinuous Galerkin (DG) scheme for the Cahn-Hilliard equation that satisfies the summation-by-parts simultaneous-approximation-term (SBP-SAT) property. The latter permits us to show that the discrete free-energy is bounded, and as a result, the scheme is provably stable. The scheme and the stability proof are presented for general curvilinear three-dimensional hexahedral meshes. We use the Bassi-Rebay 1 (BR1) scheme to compute interface fluxes, and an IMplicit-EXplicit (IMEX) scheme to integrate in time. Lastly, we test the theoretical findings numerically and present examples for two and three-dimensional problems

    Relationship between nondestructive firmness measurements and commercially important ripening fruit stages for peaches, nectarines and plums

    Full text link
    Fruit firmness measurement is a good way to monitor fruit softening and to predict bruising damage during harvest and postharvest handling. Ripening protocols traditionally utilize a destructive penetrometer-type fruit firmness measure to monitor ripening. Until recently, methods of assessing fruit texture properties nondestructively were not commercially available. The nondestructive Sinclair iQ™ firmness tester was investigated to monitor ripening and predict bruising susceptibility in stone fruit. This work was carried out on four peach, three plum, and five nectarine cultivars over two seasons. The correlations between destructive and nondestructive firmness measurements were significant (p-value = 0.0001), although too low for commercial applications as they varied from r2 = 0.60–0.71 according to fruit type. Using a different approach, the relationship between destructive and nondestructive firmness measures was characterized in terms of segregating these fruit according to their stages of ripening. This was done by using discriminant analysis (66–90% agreement in ripeness stage classification was observed in validation tests). Discriminant analysis consistently segregated nondestructive firmness measured fruit into commercially important classes (“ready to eat”, “ready to buy”, “mature and immature”). These represented key ripening stages with different bruising potentials and consumer acceptance. This work points out the importance to relate nondestructive measurements directly to important commercial physiological stages rather than to correlate them with the current standard penetrometer values. Thus, destructive and nondestructive firmness measurements can be directly used to identify the stage of ripeness and potential susceptibility to bruising during postharvest changes. Further work is recommended to evaluate the performance of this nondestructive sensor in segregating fruit according to their stage of ripeness under packinghouse or processing plant conditions

    Overview of the experimental tests in prototype

    Get PDF
    Experimental tests in prototype are necessary to understand the dynamic behaviour of the machine during different operating points. Hydraulic phenomena as well as its effect on the structure need to be studied in o rder to avoid instabilities during operation and to extend the life - time of the different components. For this purpose, a complete experimental study of a large Francis turbine prototype has been performed installing several sensors along the machine. Pres sure sensors were installed in the penstock, spiral case, runner and draft tube, strain gauges were installed in the runner, vibration sensors were used in the stationary parts and different electrical and operational parameters were also measured. All the se signals were acquired simultaneously for different operating points of the turbine.Postprint (published version

    Influence of the boundary conditions on the natural frequencies of a Francis turbine

    Get PDF
    Natural frequencies estimation of Francis turbines is of paramount importance in the stage of design in order to avoid vibration and resonance problems especially during transient events. Francis turbine runners are submerged in water and confined with small axial and radial gaps which considerably decrease their natural frequencies in comparison to the same structure in the air. Acoustic-structural FSI simulations have been used to evaluate the influence of these gaps. This model considers an entire prototype of a Francis turbine, including generator, shaft, runner and surrounding water. The radial gap between the runner and the static parts has been changed from the real configuration (about 0.04% the runner diameter) to 1% of the runner diameter to evaluate its influence on the machine natural frequencies. Mode-shapes and natural frequencies of the whole machine are discussed for all the boundary conditions testedPostprint (published version

    Remote sensing of Earth's atmosphere and surface using a digital array scanned interferometer: A new type of imaging spectrometer

    Get PDF
    The capabilities of the digital array scanned interferometer (DASI) class of instruments for measuring terrestrial radiation fields over the visible to mid-infrared are evaluated. DASI's are capable of high throughput, sensitivity and spectral resolution and have the potential for field-of-view spatial discrimination (an imaging spectrometer). The simplicity of design and operation of DASI's make them particularly suitable for field and airborne platform based remote sensing. The long term objective is to produce a versatile field instrument which may be applied toward a variety of atmospheric and surface studies. The operation of DASI and its advantages over other spectrometers are discussed

    Detection of hydraulic phenomena in francis turbines with different sensors

    Get PDF
    Nowadays, hydropower is demanded to provide flexibility and fast response into the electrical grid in order to compensate the non-constant electricity generation of other renewable sources. Hydraulic turbines are therefore demanded to work under o -design conditions more frequently, where di erent complex hydraulic phenomena appear, a ecting the machine stability as well as reducing the useful life of its components. Hence, it is desirable to detect in real-time these hydraulic phenomena to assess the operation of the machine. In this paper, a large medium-head Francis turbine was selected for this purpose. This prototype is instrumented with several sensors such as accelerometers, proximity probes, strain gauges, pressure sensors and a microphone. Results presented in this paper permit knowing which hydraulic phenomenon is detected with every sensor and which signal analysis technique is necessary to use. With this information, monitoring systems can be optimized with the most convenient sensors, locations and signal analysis techniquesPostprint (published version

    Experimental measurements of the natural frequencies and mode shapes of rotating disk-blades-disk assemblies from the stationary frame

    Get PDF
    Determining the natural frequencies and mode shapes of rotating turbomachinery components from both rotating and stationary reference frames is of paramount importance to avoid resonance problems that could affect the normal operation of the machine, or even cause critical damages in these components. Due to their similarity to real engineering cases, this topic has been experimentally analyzed in the past for disk-shaft assemblies and rotor disk-blades assemblies (bladed-disk or blisk). The same topic is less analyzed for disk-blades-disk assemblies, although such configurations are widely used in centrifugal closed impellers of compressors, hydraulic pumps, pump-turbines, and runners of high head Francis turbines. In this paper, experimental measurements, varying the rotating speed of a disk-blade-disk assembly and exciting the first natural frequencies of the rotating frame, have been performed. The rotating structure is excited and measured by means of PZT patches from the rotating frame and with a Laser Doppler Vibrometer (LDV). In order to interpret the experimental results obtained from the stationary frame, a method to decompose the diametrical mode shapes of the structure in simple diametrical components (which define the diametrical mode shapes of a simple disk) has been proposed. It is concluded that the resonant frequencies detected with a stationary sensor correspond to the ones predicted with the decomposition method. Finally, a means to obtain equivalent results with numerical simulation methods is shown.Postprint (published version

    Application of electrodialysis for the treatment of almond industry wastewater

    Get PDF
    In this work, electrodialysis has been proved to be a suitable technique for decreasing the conductivity of a real wastewater from an almond industry, which has been previously treated by electrocoagulation (EC) and electrooxidation (EO). A seven-cell electrodialyzer, with total active membrane area of 1400 cm2, was employed and several parameters, as the limiting current density, were determined. A method for measuring voltage across the membranes was developed, in order to control membrane fouling. The method consisted of capillaries inserted into the solution compartments and connected to a high impedance voltmeter. A study of the reuse of the concentrate solution was made, and it was stated that it can be concentrated 10 times. The treatment of the wastewater was performed at different voltages (7–16 V) to reach values of conductivity of the diluate of 0.5 mS cm−1. After that, the scaling up to a pre-industrial scale was performed by using a 70-cell electrodialyzer, with total active membrane area of 3.5 m2. The process was performed by applying voltages of 20–70 V and a final conductivity of the diluate of 0.5 mS cm−1 was achieved. The electric energy consumption was calculated in every case
    corecore