209 research outputs found
Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics
This is the final version of the article. Available from Wiley via the DOI in this record.With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.The research leading to this paper was supported by NERC grant NE/N001672/1 and a studentship award to RK from the NERC GW4+ Doctoral Training Partnership
Early above- and below-ground responses of subboreal conifer seedlings to various levels of deciduous canopy removal
We examined the growth of understory conifers, following partial or complete deciduous canopy removal, in a field study established in two regions in Canada. In central British Columbia, we studied the responses of three species (Pseudotsuga menziesii var. glauca (Beissn.) Franco, Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm., and Abies lasiocarpa (Hook.) Nutt.), and in northwestern Quebec, we studied one species (Abies balsamea (L.) Mill.). Stem and root diameter and height growth were measured 5 years before and 3 years after harvesting. Both root and stem diameter growth increased sharply following release but seedlings showed greater root growth, suggesting that in the short term, improvement in soil resource capture and transport, and presumably stability, may be more important than an increase in stem diameter and height growth. Response was strongly size dependent, which appears to reflect greater demand for soil resources as well as higher light levels and greater tree vigour before release for taller individuals. Growth ratios could not explain the faster response generally attributed to true fir species or the unusual swift response of spruces. Good prerelease vigour of spruces, presumably favoured by deciduous canopies, could explain their rapid response to release
Kilpisjärven seudun sahapistiäislajistosta ja eri lajien esiintymisestä eri korkeusvyöhykkeillä
- …