19 research outputs found
Recommended from our members
A Feasibility Study of Expanded Home-Based Telerehabilitation After Stroke
Introduction: High doses of activity-based rehabilitation therapy improve outcomes after stroke, but many patients do not receive this for various reasons such as poor access, transportation difficulties, and low compliance. Home-based telerehabilitation (TR) can address these issues. The current study evaluated the feasibility of an expanded TR program.
Methods: Under the supervision of a licensed therapist, adults with stroke and limb weakness received home-based TR (1 h/day, 6 days/week) delivered using games and exercises. New features examined include extending therapy to 12 weeks duration, treating both arm and leg motor deficits, patient assessments performed with no therapist supervision, adding sensors to real objects, ingesting a daily experimental (placebo) pill, and generating automated actionable reports.
Results: Enrollees (n = 13) were median age 61 (IQR 52–65.5), and 129 (52–486) days post-stroke. Patients initiated therapy on 79.9% of assigned days and completed therapy on 65.7% of days; median therapy dose was 50.4 (33.3–56.7) h. Non-compliance doubled during weeks 7–12. Modified Rankin scores improved in 6/13 patients, 3 of whom were \u3e3 months post-stroke. Fugl-Meyer motor scores increased by 6 (2.5–12.5) points in the arm and 1 (−0.5 to 5) point in the leg. Assessments spanning numerous dimensions of stroke outcomes were successfully implemented; some, including a weekly measure that documented a decline in fatigue (p = 0.004), were successfully scored without therapist supervision. Using data from an attached sensor, real objects could be used to drive game play. The experimental pill was taken on 90.9% of therapy days. Automatic actionable reports reliably notified study personnel when critical values were reached.
Conclusions: Several new features performed well, and useful insights were obtained for those that did not. A home-based telehealth system supports a holistic approach to rehabilitation care, including intensive rehabilitation therapy, secondary stroke prevention, screening for complications of stroke, and daily ingestion of a pill. This feasibility study informs future efforts to expand stroke TR
Recommended from our members
Social Network Structure Is Related to Functional Improvement From Home-Based Telerehabilitation After Stroke
Objective: Telerehabilitation (TR) is now, in the context of COVID-19, more clinically relevant than ever as a major source of outpatient care. The social network of a patient is a critical yet understudied factor in the success of TR that may influence both engagement in therapy programs and post-stroke outcomes. We designed a 12-week home-based TR program for stroke patients and evaluated which social factors might be related to motor gains and reduced depressive symptoms.
Methods: Stroke patients (n = 13) with arm motor deficits underwent supervised home-based TR for 12 weeks with routine assessments of motor function and mood. At the 6-week midpoint, we mapped each patient\u27s personal social network and evaluated relationships between social network metrics and functional improvements from TR. Finally, we compared social networks of TR patients with a historical cohort of 176 stroke patients who did not receive any TR to identify social network differences.
Results: Both network size and network density were related to walk time improvement (p = 0.025; p = 0.003). Social network density was related to arm motor gains (p = 0.003). Social network size was related to reduced depressive symptoms (p = 0.015). TR patient networks were larger (p = 0.012) and less dense (p = 0.046) than historical stroke control networks.
Conclusions: Social network structure is positively related to improvement in motor status and mood from TR. TR patients had larger and more open social networks than stroke patients who did not receive TR. Understanding how social networks intersect with TR outcomes is crucial to maximize effects of virtual rehabilitation
Cause-specific mortality of children younger than 5 years in communities receiving biannual mass azithromycin treatment in Niger: verbal autopsy results from a cluster-randomised controlled trial.
BACKGROUND: The Macrolides Oraux pour Réduire les Décès avec un Oeil sur la Résistance (MORDOR) trial found that biannual mass distribution of azithromycin to children younger than 5 years in Niger reduced the primary outcome of all-cause mortality by 18%. We aimed to determine the causes of mortality among deceased children using verbal autopsy. METHODS: In this 2-year cluster-randomised controlled trial, 594 community clusters in Niger were randomly allocated (1:1 ratio) to receive biannual mass distributions of either oral azithromycin (approximately 20 mg per kg of bodyweight) or placebo targeted to children aged 1-59 months. Participants, study investigators, and field workers were masked to treatment allocation. Between Nov 23, 2014, and July 31, 2017, 3615 child deaths were recorded by use of biannual house-to-house censuses, and verbal autopsies were done between May 26, 2015, and May 17, 2018, to identify cause of death. Cause-specific mortality, as assessed by verbal autopsy, was a prespecified secondary outcome. This trial is completed and is registered with ClinicalTrials.gov, NCT02047981. FINDINGS: Between Nov 23, 2014, and July 31, 2017, 303 communities (n=40 375 children at baseline) in Niger received mass azithromycin and 291 communities (n=35 747 children at baseline) received placebo. Treatment coverage was 90·3% (SD 10·6) in the azithromycin group and 90·4% (10·1) in the placebo group. No communities were lost to follow-up. In total, 1727 child deaths in the azithromycin group and 1888 child deaths in the placebo group were reported from the population censuses. Of these, the cause of death for 1566 (90·7%) children in the azithromycin group and 1735 (91·9%) children in the placebo group were ascertained by verbal autopsy interviews. In the azithromycin group, 437 (27·9%) deaths were due to malaria, 252 (16·1%) deaths were due to pneumonia, and 234 (14·9%) deaths were due to diarrhoea. In the placebo group, 493 (28·4%) deaths were due to malaria, 275 (15·9%) deaths were due to pneumonia, and 251 (14·5%) deaths were due to diarrhoea. Relative to communities that received placebo, child mortality in communities that received azithromycin was lower for malaria (incidence rate ratio 0·78, 95% CI 0·66-0·92; p=0·0029), dysentery (0·65, 0·44-0·94; p=0·025), meningitis (0·67, 0·46-0·97; p=0·036), and pneumonia (0·83, 0·68-1·00; p=0·051). The distribution of causes of death did not differ significantly between the two study groups (p=0·98). INTERPRETATION: Mass azithromycin distribution resulted in approximately a third fewer deaths in children aged 1-59 months due to meningitis and dysentery, and a fifth fewer deaths due to malaria and pneumonia. The lack of difference in the distribution of causes of death between the azithromycin and placebo groups could be attributable to the broad spectrum of azithromycin activity and the study setting, in which most childhood deaths were due to infections. FUNDING: Bill & Melinda Gates Foundation
Mass Oral Azithromycin for Childhood Mortality: Timing of Death After Distribution in the MORDOR Trial.
In a large community-randomized trial, biannual azithromycin distributions significantly reduced postneonatal childhood mortality in sub-Saharan African sites. Here, we present a prespecified secondary analysis showing that much of the protective effect was in the first 3 months postdistribution. Distributing more frequently than biannually could be considered if logistically feasible. Clinical Trials Registration. NCT02047981
The sagittal geometry of the trochlear groove could be described as a circle: an intraoperative assessment with navigation
Purpose: The aim of this study was to describe the sagittal geometry of the trochlear groove in patients who underwent primary TKA, based on intraoperative data acquired with a navigation system. Methods: Intraoperative navigation data were collected from 110 patients. All operations were guided by a non-image-based navigation system (BLU-IGS, Orthokey Italia Srl). The trochlear groove has been described on the three anatomical planes; in particular, on the sagittal plane the hypothesis has been verified that the acquired points are referable to a circle. Using the data collected during intraoperative navigation, possible correlation between the radius of the trochlear groove and other femur dimension (length, AP dimension) was analyzed; the orientation of the trochlear sulcus with respect to the mechanical axis and the posterior condyle axis was analyzed too, searching for possible correlation between groove alignment (frontal and axial) or groove radius and the hip–knee–ankle (HKA). Results: The average radius of curvature of the femoral trochlea was 25.5 ± 5.6 mm; the difference was not statistically significant between the men and women (n.s. p value). No correlation was found between the trochlear groove radius and the femur length (r = − 0.02) or the HKA-phenotypes (r = 0.03) and between the groove alignment and HKA-phenotypes. On axial plane, the trochlear groove was 3.2° ± 4.3° externally rotated, with respect to the posterior condylar axis; on frontal plane, the trochlear groove was 3.9° ± 5.3° externally rotated, with respect to the mechanical axis. In both cases, no statistically significant differences were found between male and female and between left and right limb (p > 0.05). Conclusion: The present study shows that the sagittal plane geometry of the femoral trochlea in patients affected by osteoarthritis could be described accurately as a circle. The acquisition of the trochlear morphology intraoperatively can lead to more anatomically shape definition, to investigate deeper its radius of curvature and geometry. Trochlear shape could be used as landmarks for femoral component positioning, thus customizing the implant design, optimize the outcomes and improving anterior knee pain after TKA. Level of evidence: IV
Isolation of follicular dendritic cells from human tonsils and adenoids. VI. Analysis of prostaglandin secretion.
Follicular dendritic cells (FDC) are able to fix high amounts of immune complexes by C3b or Fc receptors without endocytosis and for long periods of time. In order to determine the function of this retention, we analysed the secretion of prostaglandin E2 (PGE2) by FDC in vitro; indeed, it is well-known that immune complex fixation on cells may induce PGE2 production. FDC were isolated by enzymic digestion of lymph follicles dissected under the biomicroscope from human tonsils or adenoids. Isolated FDC appeared as spherical clusters where they enveloped lymphoid cells with their cytoplasmic extensions. Tests were performed in synthetic culture media or in media supplemented with foetal calf serum. PGE2 production in FDC suspensions was compared to that of lymphocyte or macrophage-enriched populations prepared from the same human tonsils. In all experimental conditions, FDC and macrophage-enriched cell populations produced high levels of PGE2, inversely to lymphoid cell populations. This secretion was inhibited by indomethacin. At the ultrastructural level, we also showed that 3H-arachidonic acid was metabolized in cell membranes of all three cell types. The PGE2 produced in the culture media, according to our experimental conditions, do not influence cell proliferation, as assessed by 3H-thymidine incorporation tests on phytohaemagglutinin-stimulated lymphocytes.In VitroJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Recommended from our members
SOA formation potential of emissions from soil and leaf litter.
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation
Electroencephalography Might Improve Diagnosis of Acute Stroke and Large Vessel Occlusion.
Background and purposeClinical methods have incomplete diagnostic value for early diagnosis of acute stroke and large vessel occlusion (LVO). Electroencephalography is rapidly sensitive to brain ischemia. This study examined the diagnostic utility of electroencephalography for acute stroke/transient ischemic attack (TIA) and for LVO.MethodsPatients (n=100) with suspected acute stroke in an emergency department underwent clinical exam then electroencephalography using a dry-electrode system. Four models classified patients, first as acute stroke/TIA or not, then as acute stroke with LVO or not: (1) clinical data, (2) electroencephalography data, (3) clinical+electroencephalography data using logistic regression, and (4) clinical+electroencephalography data using a deep learning neural network. Each model used a training set of 60 randomly selected patients, then was validated in an independent cohort of 40 new patients.ResultsOf 100 patients, 63 had a stroke (43 ischemic/7 hemorrhagic) or TIA (13). For classifying patients as stroke/TIA or not, the clinical data model had area under the curve=62.3, whereas clinical+electroencephalography using deep learning neural network model had area under the curve=87.8. Results were comparable for classifying patients as stroke with LVO or not.ConclusionsAdding electroencephalography data to clinical measures improves diagnosis of acute stroke/TIA and of acute stroke with LVO. Rapid acquisition of dry-lead electroencephalography is feasible in the emergency department and merits prehospital evaluation