204 research outputs found

    Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication

    No full text
    International audienceFood demand will increase concomitantly with human population. Food production therefore needs to be high enough and, at the same time, minimize damage to the environment. This equation cannot be solved with current strategies. Based on recent findings, new trajectories for agriculture and plant breeding which take into account the belowground compartment and evolution of mutualistic strategy, are proposed in this opinion article. In this context, we argue that plant breeders have the opportunity to make use of native arbuscular mycorrhizal (AM) symbiosis in an innovative ecologically intensive agriculture

    Nitrate and sulphate dynamics in peat subjected to different hydrological conditions: Batch experiments and field comparison

    No full text
    International audienceConservation of ecosystems that depend on water management and water quality has to be considered. We combined a field monitoring and batch experiments to better understand the impact of hydrological perturbations on peatland functioning. Factors influencing the dynamics of nitrate and sulphate concentration observed in two sites with different hydrological conditions in a south Normandy peatland were determined through the comparison of field and lab experiment. The effects of nitrate input, and oxic or anoxic conditions on nitrate and sulphate concentrations were investigated in bioreactors, using peat samples from field sites influenced by different hydrologic regimes. In this experiment, peat samples were subjected to similar conditions to address the effects of NO 3 and O2 concentrations (chemical effects), and the effect of hydrologic regimes and peat soil moisture (physical effects) on nitrate and sulphate dynamics. Cl , SO2 4 and NO 3 were monitored for 215 h. Nitrate was significantly reduced in most experiments. A complete nitrate reduction after 215 h in soil under anoxic conditions was observed. A denitrification process was also found under aerobic conditions depending on the peat site sampling, i.e. depending on the hydrological conditions. This process was interpreted as a heterotrophic denitrification. Sulphate monitoring revealed that 400 mg L 1 were produced in peat from the peat site with high hydrologic fluxes under aerobic conditions. Clear differences in chloride concentration (deviance analysis, P < 0.05), sulphate concentration and nitrate consumption dynamics (deviance analysis, P < 0.0001) were observed, for similar experimental chemical conditions, between the samples from the two peat sites. These differences were related to the field chemical variations observed and they indicate that part of the field nitrate and sulphate dynamics is linked to different bacterial activity and not only to nutrient fluxes variations

    Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

    Get PDF
    Le mutualisme entre les plantes et les champignons arbusculaires mycorhiziens est extrêmement répandu (~ 80% des plantes sont colonisées par ces organismes) et ancien (il ya plus de 450 millions d'années). Cette relation symbiotique est une composante essentielle du fonctionnement des écosystèmes et de leur productivité, et est fortement impliqué dans le cycle de deux éléments clés: le phosphore et le carbone. Le maintien de ce mutualisme est devenu particulièrement important dans le contexte actuel de perte de biodiversité. Un des objectifs de cette thèse était de comprendre la stabilité de ce mutualisme. L'accent a tout d'abord été mis sur les échanges de nutriments impliqués dans cette symbiose, en testant si la plante hôte et les symbiotes fongiques sont capables de discriminer leurs différents partenaires, et d'allouer davantage de ressources aux partenaires fournissant plus de nutriments. J'ai ensuite étudié la possibilité de l'implication de la plante hôte dans la protection des symbiotes mycorhiziens via un transfert de métabolites secondaires dans les hyphes. Nous avons alors pu emettre une nouvelle hypothèse suggérant que la protection en métabolites secondaires venant de la plante serait positivement corrélée avec le niveau de coopération (à savoir le transfert des nutriments) du champignon symbiotique. L'echelle d'étude est ensuite passée de l'individu à la communauté en étudiant les effets de la diminution de la diversité végétale sur la diversité des symbiotes racinaires. Pour ce faire, des analyses moléculaires et des outils novateurs ont été utilisés, tels que le séquençage à haut débit. Pour faciliter encore l'étude des séquences obtenues et d'autres séquences fongiques, j'ai collaboré avec des collègues afin de créer une base de données 'Phymyco-DB' rendue publique en 2012. Enfin, je discute de l'implication du mutualisme mycorhizien dans le contexte des systèmes agricoles actuels et propose de nouvelles trajectoires pour gérer ces systèmes. Ce projet de thèse apporte un nouvel éclairage sur la façon dont fonctionnent ces interactions entre les plantes et champignons MA et sur la manière dont ils façonnent les processus écologiques et les trajectoires évolutives dans les écosystèmes naturels et agricoles. Ces points sont d'une importance majeure pour développer une agriculture plus écologiquement intensive et durable. Le projet a fourni de nouvelles connaissances et perspectives sur la perte de la diversité végétale, et ses conséquences pour la stabilité de la symbiose AM. Comme les champignons mycorhiziens sont essentiels dans les processus des écosystèmes et l'entretien de la fertilité des sols, ce travail devrait avoir un large impact dans (i) la politique de protection des sols, (ii) la recherche sur l'amélioration des plantes et (iii) la conception de systèmes agricoles durables.The mutualism between plants and arbuscular mycorrhizal fungi is extremely widespread (~ 80% of plants are colonized by these organisms) and ancient (over 450 million years ago). This symbiotic relationship is an essential component of healthy ecosystem functioning and productivity, and is strongly involved in the cycle of two key elements: phosphorus and carbon. Maintaining this mutualism has become especially important in the current context of a biodiversity loss. One goal of this thesis was to understand the stability of the mutualism. I first focused on nutrient exchange, testing whether plant host and fungal symbionts are able to discriminate among partners, and allocate more resources to those individuals providing more nutrients. I then explored the possibility of the host-plant involvement in the protection of mycorrhizal symbionts via a transfer of secondary metabolites into fungal hyphae. We introduced a new hypothesis suggesting that chemcial protection from the plant is positively correlated with the level of cooperation (i.e. nutrient transfer) of the fungal symbiont. I then moved from the individual to the community by studying the effects of decreasing plant diversity on the diversity of root symbionts. To this aim, I utilized molecular analyzes and innovative tools, such as high throughput sequencing. To further facilitate the study of the obtained sequences and other fungal sequences, I worked with colleagues to create a database Phymyco-DB which was released to the public in 2012. Finally, I discuss the implication of the mycorrhizal mutualism in the context of current agricultural systems and propose new trajectories to manage these systems. This PhD project provides new insights on how plant and AM fungi interactions work and how they shape ecological processes and evolutionary trajectories in natural and agricultural ecosystems. These points are of major importance to develop a more ecologically intensive agriculture. The project has provided new knowledge and perspectives on the loss of plant diversity, and its consequences for AM symbiosis stability. As arbuscular mycorrhizal fungi are essential in ecosystem processes and soil fertility maintenance, this work should have a broad impact in (i) the soil protection policy, (ii) the research on plant breeding and (iii) the design of sustainable agricultural systems.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Unraveling the Stratification of an Iron-Oxidizing Microbial Mat by Metatranscriptomics

    No full text
    International audienceA metatranscriptomic approach was used to study community gene expression in a naturally occurring iron-rich microbial mat. Total microbial community RNA was reversely transcribed and sequenced by pyrosequencing. Characterization of expressed gene sequences provided accurate and detailed information of the composition of the transcriptionally active community and revealed phylogenetic and functional stratifications within the mat. Comparison of 16S rRNA reads and delineation of OTUs showed significantly lower values of metatranscriptomic-based richness and diversity in the upper parts of the mat than in the deeper regions. Taxonomic affiliation of rRNA sequences and mRNA genome recruitments indicated that iron-oxidizing bacteria affiliated to the genus Leptothrix, dominated the community in the upper layers of the mat. Surprisingly, type I methanotrophs contributed to the majority of the sequences in the deep layers of the mat. Analysis of mRNA expression patterns showed that genes encoding the three subunits of the particulate methane monooxygenase (pmoCAB) were the most highly expressed in our dataset. These results provide strong hints that iron-oxidation and methane-oxidation occur simultaneously in microbial mats and that both groups of microorganisms are major players in the functioning of this ecosystem

    Ecological corridors homogenize plant root endospheric mycobiota

    Get PDF
    Ecological corridors promote species coexistence in fragmented habitats where dispersal limits species fluxes. The corridor concept was developed and investigated with macroorganisms in mind, while microorganisms, the invisible majority of biodiversity, were disregarded. We analyzed the effect of corridors on the dynamics of endospheric fungal assemblages associated with plant roots at the scale of 1 m over 2 years (i.e. at five time points) by combining an experimental corridor-mesocosm with high-throughput amplicon sequencing. We showed that plant root endospheric mycobiota were sensitive to corridor effects when the corridors were set up at a small spatial scale. The endospheric mycobiota of connected plants had higher species richness, lower beta-diversity, and more deterministic assembly than the mycobiota of isolated plants. These effects became more pronounced with the development of host plants. Biotic corridors composed of host plants may thus play a key role in the spatial dynamics of microbial communities and may influence microbial diversity and related ecological functions

    Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms

    Get PDF
    The diversity of arbuscular mycorrhizal (AM) fungi was investigated in an unfertilized limestone grassland soil supporting different synthesized vascular plant assemblages that had developed for 3 yr. The experimental treatments comprised: bare soil; monocultures of the nonmycotrophic sedge Carex flacca; monocultures of the mycotrophic grass Festuca ovina; and a species-rich mixture of four forbs, four grasses and four sedges. The diversity of AM fungi was analysed in roots of Plantago lanceolata bioassay seedlings using terminal-restriction fragment length polymorphism (T-RFLP). The extent of AM colonization, shoot biomass and nitrogen and phosphorus concentrations were also measured. The AM diversity was affected significantly by the floristic composition of the microcosms and shoot phosphorus concentration was positively correlated with AM diversity. The diversity of AM fungi in P. lanceolata decreased in the order: bare soil > C. flacca > 12 species > F. ovina. The unexpectedly high diversity in the bare soil and sedge monoculture likely reflects differences in the modes of colonization and sources of inoculum in these treatments compared with the assemblages containing established AM-compatible plants

    Toward the next green revolution

    No full text
    International audienc

    Community assembly and structure.

    No full text
    International audienc

    Biogenouest génomique : contour et éléments prospectifs

    No full text
    National audienc
    • …
    corecore