39 research outputs found

    Ancient origins of low lean mass among South Asians and implications for modern type 2 diabetes susceptibility

    No full text
    Living South Asians have low lean tissue mass relative to height, which contributes to their elevated type 2 diabetes susceptibility, particularly when accompanied by obesity. While ongoing lifestyle transitions account for rising obesity, the origins of low lean mass remain unclear. We analysed proxies for lean mass and stature among South Asian skeletons spanning the last 11,000 years (n = 197) to investigate the origins of South Asian low lean mass. Compared with a worldwide sample (n = 2,003), South Asian skeletons indicate low lean mass. Stature-adjusted lean mass increased significantly over time in South Asia, but to a very minor extent (0.04 z-score units per 1,000 years, adjusted R2 = 0.01). In contrast stature decreased sharply when agriculture was adopted. Our results indicate that low lean mass has characterised South Asians since at least the early Holocene and may represent long-term climatic adaptation or neutral variation. This phenotype is therefore unlikely to change extensively in the short term, so other strategies to address increasing non-communicable disease rates must be pursued. © 2019, The Author(s)

    Ancient origins of low lean mass among South Asians and implications for modern type 2 diabetes susceptibility

    Get PDF
    Living South Asians have low lean tissue mass relative to height, which contributes to their elevated type 2 diabetes susceptibility, particularly when accompanied by obesity. While ongoing lifestyle transitions account for rising obesity, the origins of low lean mass remain unclear. We analysed proxies for lean mass and stature among South Asian skeletons spanning the last 11,000 years (n = 197) to investigate the origins of South Asian low lean mass. Compared with a worldwide sample (n = 2,003), South Asian skeletons indicate low lean mass. Stature-adjusted lean mass increased significantly over time in South Asia, but to a very minor extent (0.04 z-score units per 1,000 years, adjusted R^{2} = 0.01). In contrast stature decreased sharply when agriculture was adopted. Our results indicate that low lean mass has characterised South Asians since at least the early Holocene and may represent long-term climatic adaptation or neutral variation. This phenotype is therefore unlikely to change extensively in the short term, so other strategies to address increasing non-communicable disease rates must be pursued

    Estimating body mass and composition from proximal femur dimensions using Dual Energy X-Ray Absorptiometry

    Get PDF
    Body mass prediction from the skeleton most commonly employs femoral head diameter (FHD). However, theoretical predictions and empirical data suggest the relationship between mass and FHD is strongest in young adults; that bone dimensions reflect lean mass better than body or fat mass; and that other femoral measurements may be superior. Here we generate prediction equations for body mass and its components using femoral head, neck and proximal shaft diameters and body composition data derived from dual energy X-Ray absorptiometry (DXA) scans of young adults (n = 155, 77 females and 78 males, mean age 22.7 ± 1.3 years) from the Andhra Pradesh Children and Parents Study, Hyderabad, India. Sex-specific regression of log-transformed data on femoral measurements predicted lean mass with smaller standard errors of estimate (SEEs) than body mass (12-14 % and 16-17 % respectively), while none of the femoral measurements were significant predictors of fat mass. Subtrochanteric medio-lateral shaft diameter gave lower SEEs for lean mass in both sexes and for body mass in males than FHD, while FHD was a better predictor of body mass in women. Our results provide further evidence that lean mass is more closely related to proximal femur dimensions than body or fat mass, and that proximal shaft diameter is a better predictor than FHD of lean but not always body mass. The mechanisms underlying these relationships have implications for selecting the most appropriate measurement and reference sample for estimating body or lean mass, which also depend on the question under investigation

    Identifying metabolite markers for preterm birth in cervicovaginal fluid by magnetic resonance spectroscopy

    Get PDF
    Introduction Preterm birth (PTB) may be preceded by changes in the vaginal microflora and metabolite profiles. Objectives We sought to characterise the metabolite profile of cervicovaginal fluid (CVF) of pregnant women by 1H NMR spectroscopy, and assess their predictive value for PTB. Methods A pair of high-vaginal swabs was obtained from pregnant women with no evidence of clinical infection and grouped as follows: asymptomatic low risk (ALR) women with no previous history of PTB, assessed at 20–22 gestational weeks, g.w., n = 83; asymptomatic high risk (AHR) women with a previous history of PTB, assessed at both 20–22 g.w., n = 71, and 26–28 g.w., n = 58; and women presenting with symptoms of preterm labor (PTL) (SYM), assessed at 24–36 g.w., n = 65. Vaginal secretions were dissolved in phosphate buffered saline and scanned with a 9.4 T NMR spectrometer. Results Six metabolites (lactate, alanine, acetate, glutamine/glutamate, succinate and glucose) were analysed. In all study cohorts vaginal pH correlated with lactate integral (r = -0.62, p\0.0001). Lactate integrals were higher in the term ALR compared to the AHR (20–22 g.w.) women (p = 0.003). Acetate integrals were higher in the preterm versus term women for the AHR (20–22 g.w.) (p = 0.048) and SYM (p = 0.003) groups; and was predictive of PTB\37 g.w. (AUC 0.78; 95 % CI 0.61–0.95), and delivery within 2 weeks of the index assessment (AUC 0.84; 95 % CI 0.64–1) in the SYM women, whilst other metabolites were not. Conclusion High CVF acetate integral of women with symptoms of PTL appears predictive of preterm delivery, as well as delivery within 2 weeks of presentation

    Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India

    No full text
    Situated at over 5,000 meters above sea level in the Himalayan Mountains, Roopkund Lake is home to the scattered skeletal remains of several hundred individuals of unknown origin. We report genome-wide ancient DNA for 38 skeletons from Roopkund Lake, and find that they cluster into three distinct groups. A group of 23 individuals have ancestry that falls within the range of variation of present-day South Asians. A further 14 have ancestry typical of the eastern Mediterranean. We also identify one individual with Southeast Asian-related ancestry. Radiocarbon dating indicates that these remains were not deposited simultaneously. Instead, all of the individuals with South Asian-related ancestry date to ~800 CE (but with evidence of being deposited in more than one event), while all other individuals date to ~1800 CE. These differences are also reflected in stable isotope measurements, which reveal a distinct dietary profile for the two main groups

    Advancing the understanding of treponemal disease in the past and present

    Get PDF
    Syphilis was perceived to be a new disease in Europe in the late 15th century, igniting a debate about its origin that continues today in anthropological, historical, and medical circles. We move beyond this age-old debate using an interdisciplinary approach that tackles broader questions to advance the understanding of treponemal infection (syphilis, yaws, bejel, and pinta). How did the causative organism(s) and humans co-evolve? How did the related diseases caused by Treponema pallidum emerge in different parts of the world and affect people across both time and space? How are T. pallidum subspecies related to the treponeme causing pinta? The current state of scholarship in specific areas is reviewed with recommendations made to stimulate future work. Understanding treponemal biology, genetic relationships, epidemiology, and clinical manifestations is crucial for vaccine development today and for investigating the distribution of infection in both modern and past populations. Paleopathologists must improve diagnostic criteria and use a standard approach for recording skeletal lesions on archaeological human remains. Adequate contextualization of cultural and environmental conditions is necessary, including site dating and justification for any corrections made for marine or freshwater reservoir effects. Biogeochemical analyses may assess aquatic contributions to diet, physiological changes arising from treponemal disease and its treatments (e.g., mercury), or residential mobility of those affected. Shifting the focus from point of origin to investigating who is affected (e.g., by age/sex or socioeconomic status) and disease distribution (e.g., coastal/ inland, rural/urban) will advance our understanding of the treponemal disease and its impact on people through time

    An Algorithm to Calculate K- and L-Points

    No full text

    Infection, disease, and biosocial processes at the end of the Indus Civilization.

    Get PDF
    In the third millennium B.C., the Indus Civilization flourished in northwest India and Pakistan. The late mature phase (2200-1900 B.C.) was characterized by long-distance exchange networks, planned urban settlements, sanitation facilities, standardized weights and measures, and a sphere of influence over 1,000,000 square kilometers of territory. Recent paleoclimate reconstructions from the Beas River Valley demonstrate hydro-climatic stress due to a weakened monsoon system may have impacted urban centers like Harappa by the end of the third millennium B.C. the impact of environmental change was compounded by concurrent disruptions to the regional interaction sphere. Climate, economic, and social changes contributed to the disintegration of this civilization after 1900 B.C. We assess evidence for paleopathology to infer the biological consequences of climate change and socio-economic disruption in the post-urban period at Harappa, one of the largest urban centers in the Indus Civilization. Bioarchaeological evidence demonstrates the prevalence of infection and infectious disease increased through time. Furthermore, the risk for infection and disease was uneven among burial communities. Corresponding mortuary differences suggest that socially and economically marginalized communities were most vulnerable in the context of climate uncertainty at Harappa. Combined with prior evidence for increasing levels of interpersonal violence, our data support a growing pathology of power at Harappa after 2000 B.C. Observations of the intersection between climate change and social processes in proto-historic cities offer valuable lessons about vulnerability, insecurity, and the long-term consequences of short-term strategies for coping with climate change
    corecore