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Abstract

Body mass prediction from the skeleton most commonly employs femoral head diameter (FHD). However, theoretical predic-

tions and empirical data suggest the relationship between mass and FHD is strongest in young adults, that bone dimensions reflect

lean mass better than body or fat mass and that other femoral measurements may be superior. Here, we generate prediction

equations for body mass and its components using femoral head, neck and proximal shaft diameters and body composition data

derived from dual-energy x-ray absorptiometry (DXA) scans of young adults (n = 155, 77 females and 78 males, mean age 22.7

± 1.3 years) from the Andhra Pradesh Children and Parents Study, Hyderabad, India. Sex-specific regression of log-transformed

data on femoral measurements predicted lean mass with smaller standard errors of estimate (SEEs) than body mass (12–14% and

16–17% respectively), while none of the femoral measurements were significant predictors of fat mass. Subtrochanteric

mediolateral shaft diameter gave lower SEEs for lean mass in both sexes and for body mass in males than FHD, while FHD

was a better predictor of body mass in women. Our results provide further evidence that lean mass is more closely related to

proximal femur dimensions than body or fat mass and that proximal shaft diameter is a better predictor than FHD of lean but not

always body mass. The mechanisms underlying these relationships have implications for selecting the most appropriate mea-

surement and reference sample for estimating body or lean mass, which also depend on the question under investigation.

Keywords Leanmass estimation . Fat mass estimation . India . Archaeology . Forensics . DXA

Introduction

Research continues to address the problem of estimating body

mass from the skeleton since body size is an important char-

acteristic of a species or population linking many aspects of

their behaviour, diet, mortality risk and life history (Charnov

1993; Harvey and Clutton-Brock 1985; Harvey and Read

1988; Robson and Wood 2008; Sibly and Brown 2007; Will

et al. 2017). Secular trends in body size (height and mass) in

recent centuries are also of significant interest for the insight

they offer into temporal changes in living conditions and their

implications for contemporary growth and health, particularly

in relation to obesity-linked conditions (Ng et al. 2014; Xi et

al. 2012). It is important to adjust for body mass when exam-

ining evolutionary changes in the relative size of organs such

as the brain (e.g. McHenry 1988; Ruff et al. 1997) or to stan-

dardise bone properties to infer activity levels using limb bone

cross-sectional geometry (Ruff 2008), which require body

mass to be estimated. Body mass is also an important charac-

teristic in forensic profiling (Houck 2017;Moore and Schaefer

2011).

A number of studies have focussed on using femoral head

diameter (FHD) to estimate body mass, and the three most

commonly used equations are those of McHenry (1992),

Grine et al. (1995) and Ruff et al. (1991). Femoral head size
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is assumed to relate to loading (body mass) at the end of

growth before the femoral head fuses, after which no changes

in the size of the joint occur regardless of changes in loading

due to mass or activity (Lieberman et al. 2001; Ruff et al.

1991; Trinkaus et al. 1994). The same principle is thought to

apply to other joint surfaces, so joint dimensions of other

major long bones and the first metatarsal have also been used

to estimate body mass (Chevalier et al. 2018; De Groote and

Humphrey 2011; Elliott et al. 2016a, b; Grabowski et al. 2015;

Grine et al. 1995; Lorkiewicz-Muszyńska et al. 2013;

McHenry 1992; Moore 2008; Moore and Schaefer 2011;

Ruff 2007; Ruff et al. 2018; Squyres and Ruff 2015;

Wheatley 2005; Will and Stock 2015).

An alternative to such ‘mechanical’ approaches is Ruff’s

morphometric method (Ruff 1991) which uses stature and bi-

iliac breadth to estimate body mass. This method requires

good skeletal preservation and despite compound estimation

errors when applied to skeletons (estimating stature and living

bi-iliac breadth and in turn body mass), it offers somewhat

better reliability than predictions based on joint sizes (Ruff

et al. 1991, 2005; Schaffer 2016).

Many of the FHD equations have relatively high associated

errors (e.g. Ruff et al. 1991 report standard errors of estimate

(SEE) of ≥ 14%), and they have been found to be unreliable

when the equations are applied to individuals of known body

mass (Chevalier et al. 2016; Elliott et al. 2016a; Heyes and

MacDonald 2015). For example, Elliott et al. (2016a) report

that in a cadaveric sample of European origin, estimated body

mass using FHD was only within 20% of true body mass for

58% of females and 76% of males using the best-performing

equations. This may in part be because studies such as Elliott

et al.’s (2016a, b) examined older individuals from wealthier

countries, where weight gain in middle and later adulthood

can be considerable and obesity is an increasing problem.

Such trends may weaken the relationship between joint size

(reflecting mass in early adulthood) and body mass. Squyres

and Ruff (2015) analysed distal femoral dimensions of young

adults for this reason and recorded reduced SEEs of 9.9–

13.2% for body mass estimation. In contrast, Elliott et al.

(2016b) did not find consistently improved results when the

equations they derived from a variety of postcranial measure-

ments were based only on individuals aged 18–39 years com-

pared with the full range (to 91 years). (See Ruff et al. 2018 for

a further review of previous studies and their limitations).

Some evidence suggests that joint sizes and other external

bone dimensions may be most strongly related to skeletal mus-

cle or lean mass (Baker et al. 2013; Chumlea et al. 2002; Himes

and Bouchard 1985; LeBrasseur et al. 2012; Pomeroy et al.

2018; Reeves 2014; Semanick et al. 2005; Taes et al. 2009;

Wu et al. 2007) and only weakly to fat mass (Bailey and

Brooke-Wavell 2010; Beck et al. 2001, 2009; Cole et al.

2012; El Hage and Baddoura 2012; Farr et al. 2014; Hu et al.

2012; Leslie et al. 2014; Mallinson et al. 2013; Moon et al.

2015; Pomeroy et al. 2018; Semanick et al. 2005; Sioen et al.

2016; Taes et al. 2009; Travison et al. 2008;Wu et al. 2007) and

thus show weaker relationships to total body mass. This closer

relationship of bone dimensions to lean mass than to fat mass

may result from the functional relationship between bone and

skeletal muscle (Edwards et al. 2013; Fricke and Schoenau

2007; Judex et al. 2016; Parfitt 1997; Puthucheary et al. 2015;

Rauch and Schoenau 2001; Schoenau 2005; Schoenau and

Fricke 2006; but see, e.g. Judex et al. 2016) and/or shared

developmental origins (DiGirolamo et al. 2013; Karasik et al.

2009; Lang et al. 2009; Mikkola et al. 2009; Seeman et al.

1996). A closer relationship between bone properties and lean

mass than fat mass would mean that bone dimensions give

particularly poor body mass estimates for recent, relatively ad-

ipose samples. It may also be that other bone measurements,

such as femoral neck or shaft diameter (Elliott et al. 2016b;

Pomeroy et al. 2018; Ruff et al. 1991), are more sensitive to

actual mechanical loads and thus may prove better predictors of

body mass and its components.

The potential to estimate different components of bodymass

from the skeleton is of interest since humans are characterised

by relatively high body fat and low skeletal muscle mass (a

major constituent of lean mass) compared with other primates

(Muchlinski et al. 2012; Zihlman and Bolter 2015) and fossil

hominins such as Neanderthals (Churchill 1998, 2006;

Trinkaus 1983; Trinkaus et al. 1991; Wells 2010, 2017).

Furthermore, different human populations are known to vary

widely in body composition. For example, South Asians have

relatively low lean mass in proportion to height and total body

mass, which is implicated in their elevated susceptibility to type

2 diabetes (reviewed in Wells et al. 2016), while Pacific

Islanders have high lean mass relative to height and total body

mass, which is hypothesised to reflect cold stress experienced

while at sea (Houghton 1996; Wells 2012; Wilberfoss 2012).

The ability to estimate lean and fat mass from the skeleton

would therefore enable us to investigate when and why such

inter- and intra-specific differences in body composition arose.

The aim of this study is to derive new equations for body,

lean and fat mass estimation using measurements of the prox-

imal femur derived from dual-energy x-ray absorptiometry

(DXA) scans of living young adults of known body mass

and estimated body composition. We test the hypotheses that

(1) lean mass can be more reliably estimated from skeletal

measurements than fat mass or total body mass and (2) other

bone measurements (femoral neck and shaft dimensions) are

equally good, if not superior, for predicting body mass and its

components than FHD.

Materials and methods

Whole-body and regional hip DXA scans of young adult par-

ticipants in the Andhra Pradesh Children and Parents Study

Archaeol Anthropol Sci



(APCAPS) were used in this study. APCAPS is a large, inter-

generational epidemiological study of children, their parents

and siblings living in villages surrounding Hyderabad, India

(see Kinra et al. 2014 for an overview). The study was ap-

proved by the ethics committees of the National Institute of

Nutrition, Hyderabad, and the London School of Hygiene and

Tropical Medicine, and participants provided informed

consent.

Sample selection has been described previously (Pomeroy

et al. in press), but briefly, participants underwent whole-body

and regional hip and lumbar spine DXA scans at various

stages of APCAPS, and scans from the third survey wave

(2010–2012) were selected to ensure that as many participants

as possible were in their early 20s, and so had completed their

growth: the participants selected were aged between 20 and

26 years. A random stratified sample containing equal num-

bers of males and females was selected to give even coverage

across the range of height and body mass. Only the whole-

body and regional hip scans were used in our analyses.

All DXA scans were performed on a Hologic Discovery A

(Bedford, MA, USA) at the National Institute of Nutrition,

Hyderabad, India. The scanner was calibrated daily during

the study, and the left hip scanned for bone density analysis.

Stature was measured using a Leicester Height Measure

(Chasmors, Camden, London, UK) to the nearest centimetre,

and body composition was estimated from whole-body DXA

scans taken at the same time using inbuilt software (version

12.5). Standard software options were used to calculate the

total lean mass and fat mass. Weight was measured to the

nearest 0.1 kg in light clothes without footwear using a digital

Seca scale (www.seca.com).

The proximal femur scan ‘P’ files were exported from the

Hologic APEX software and opened in ImageJ (Rasband

1997–2016) using the P Reader plugin developed by

Minxuan Dong (Dr Neil Dong, pers. comm. 2015). The auto-

matic brightness and contrast adjustment in ImageJ was ap-

plied to enhance the clarity of the image in a standard manner,

and images were scaled using known hip scan area dimen-

sions provided by the manufacturer. Supero-inferior head di-

ameter, minimum diameter of the femoral neck, and

mediolateral diameter of the subtrochanteric region of the fe-

mur were measured using the linemeasurement tool in ImageJ

following osteological definitions of these measurements

(Bräuer 1988; Martin and Saller 1957) as closely as possible

(Fig. 1). All measurements were taken by two of the authors

(EP and VM) and the mean of their measurements used in

subsequent analyses.

The repeatability of the DXA measurements (intra- and

inter-observer error) were assessed using the technical error

of measurement (TEM) and the coefficient of reliability (R),

calculated following Ulijaszek and Lourie (1994). We also

calculated TEM as a percentage of the mean for that measure-

ment (%TEM). Inter-observer error was calculated from all

data collected by EP and VM, while intra-observer error was

calculated from repeated measurements of 10 individuals tak-

en by EP at least 1 day apart. While there are no universally

accepted objective limits for TEM, %TEM or R, the results in

Table 1 indicate that intra-observer error is low: The coeffi-

cient of reliability was ≥ 0.93 and TEM ≤ 2.4%. This com-

pares with R ≥ 0.86 and TEM ≤ 3.3% for inter-observer error,

suggesting that the repeatability of the measurements is fairly

good. An additional limitation is that the resolution of the

scans, which for this dataset is approximately 2 pixels per

millimetre, may also affect measurement accuracy even when

measurement to the sub-pixel level is enabled in ImageJ.

However, the averaging of multiple measurements will help

to improve the reliability of the measurements.

Processing DXA measurements The Hologic Discovery A

uses a fan beam of x-rays which leads to magnification in

the mediolateral plane of the body, but not the cranio-caudal

plane (Boudousq et al. 2005; Griffiths et al. 1997). The extent

of this effect depends on the distance of the object of interest

(in this case, the proximal femur) from the source. Bone di-

mensions that are not orientated cranio-caudally on the DXA

Fig. 1 Example of a hip DXA scan showing measurements collected in

this study
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scans therefore need to be corrected for underlying tissue

thickness.

The relationship between degree of magnification and dis-

tance from the scanner bed was assessed by scanning a

stepped calibration block supplied by the manufacturer. This

has three metal plates measuring 100 mm square set on an

acrylic block at 40, 95 and 210 mm above the base. This block

was scanned in full-body mode in three positions on the bed

(in the midline oriented longitudinally on the bed, and orient-

ed mediolaterally with the higher end to the right side and then

to the left). The metal plates were measured using Mitutoyo

sliding callipers to the nearest 0.1 mm, and also on each of the

scans using ImageJ. The percentage magnification of each

plate measurement was calculated with reference to the calli-

per measurements of the same plates. The percentage magni-

fication was then plotted against the known height of each

plate above the base of the acrylic block. An ordinary least

squares (OLS) regression line was fitted to these data, and the

equation to estimate percentage magnification based on height

above the table was derived (Eq. 1):

Magnification %ð Þ

¼ 100− − 0:186 * height above table in millimetresþ 131:5ð Þ

ð1Þ

The Hologic Discovery A DXA images of the hip include

an estimate of total tissue thickness at the hip based on x-ray

attenuation (T), equivalent to inches of acrylic. To transform

this to body tissue equivalent, Tmust be multiplied by 1.18 to

account for differences in density of these materials (T.L.

Kelly, Hologic Inc., pers. comm. August 2015), and converted

to centimetres by multiplying by 2.54.

Total body thickness cmð Þ ¼ 1:18� T � 2:54 ð2Þ

This gives a total body thickness, but the height of the

proximal femur above the bed must be estimated to correct

the actual bone measurements. McKay et al. (2005) state that

based on computed tomography observations, the femur lies

in the mid-sagittal plane around the hip, but they do not pres-

ent the data on which this is based. Pocock et al. (1997) dem-

onstrated that among 30Australian women, aged 32–65 years,

the mean height of the femoral head above the scanning bed

was 11.2 cm (range 7.1–15.8 cm). The Hologic software gives

total tissue thickness at the hip, but it is unclear what total

body thickness was in the Australian dataset and so whether

our dataset is comparable.

To test the height of the femur at the hip in a supine posi-

tion, we measured the height of the femoral head above the

bed in pelvic MRI scans of 53 young women of South Asian

heritage living in London, UK, collected by MKS as part of a

separate research project. MRI scans were 3D volumetric T2-

weighted acquisitions (144 contiguous coronal slices; TR

15.5 ms; TE 5.1 ms, flip angle 25°, voxel size 1.2 mm3) per-

formed at Great Ormond Street Hospital for Children NHS

Trust using a 3T Siemens Magnetom Prisma scanner

(Siemens, Erlangen, Germany). The height of the centre of

the femoral head from the bed was measured in OsiriX version

8.5 (Rosset et al. 2004). Mean height of the centre of the

femoral head above the table was 61% of body thickness

(standard deviation 2.5%). The degree of magnification for a

given individual was then calculated using Eq. 1, where

Height above table cmð Þ ¼ 0:61� total body thickness ð3Þ

To correct bone measurements for magnification of the hip

scans in the mediolateral, but not cranio-caudal direction, the

linear measurement (for example FHD) and the angle of the

measurement as reported in ImageJ were taken, and adjusted

measurements were calculated using Pythagoras’ theorem on

an imaginary right angle triangle constructed treating the

ImageJ length as the hypotenuse. These new adjusted mea-

surements were then used in subsequent analyses.

Ordinary least squares (OLS) regression was used to derive

equations to estimate body, lean and fat mass from each of the

proximal femur measurements. While there is ongoing discus-

sion regarding the most appropriate regression model to use

for such analyses (Elliott et al. 2016b; Ruff et al. 2012; Smith

2009), others have reported that reduced major axis (RMA)

regression produces greater average errors (Elliott et al.

2016b) and it is less appropriate for multivariable regression.

Regression models were calculated for each of the individ-

ual femoral measurements for males and females separately,

given established sex differences in body composition.

Natural logarithms of all data were used to account for poten-

tial allometry and non-normality in the distribution of some

variables (Glazier 2013; Huxley 1932; Sokal and Rohlf 1987).

Models were also calculated for the raw data but yielded

Table 1 Intra- and inter-observer

reliability statistics for proximal

femoral measurements derived

from left hip DXA scans

Measurement Intra-observer Inter-observer

TEM (mm) %TEM R TEM (mm) %TEM R

Supero-inferior head diameter 0.76 1.8 0.96 1.4 3.3 0.86

Supero-inferior neck diameter 0.64 2.4 0.93 0.7 2.7 0.93

Subtrochanteric mediolateral shaft diameter 0.29 1.0 0.99 0.7 2.3 0.91

TEM technical error of measurement, R coefficient of reliability
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slightly higher SEEs (data not shown), so log-transformed

data were preferred. Given variability in archaeological pres-

ervation, equations based on single measurements are poten-

tially most useful, but a model containing multiple measure-

ments might offer greater accuracy where all measurements

can be taken. We therefore also ran a forward stepwise multi-

ple regression model including all three femoral measure-

ments as potential predictors. The relative performance of

the regression models was assessed from the adjusted R2

values and SEEs. All analyses were conducted using SPSS

for Windows v. 24.0 (IBM Corporation, Chicago), with p

values < 0.05 considered significant.

Results

The characteristics of the study sample are summarised in

Table 2. Mean age was 22.7 years, with even numbers of

males and females. The regression models are presented in

Tables 3 and 4 for females and males, respectively. For both

sexes, lean mass could be estimated most reliably from mea-

surements of the proximal femur (SEE = 12.0–13.5%), while

the estimation of body mass was less reliable (SEE = 15.9–

16.9%) and fat mass prediction showed poor reliability with

statistically non-significant models (SEE = 33.5–44.5%). It

should be noted that for females, the regressions for body

mass were also non-significant for femoral neck and

subtrochanteric shaft diameter. Example scatterplots for body,

lean and fat mass against femur subtrochanter mediolateral

diameter are shown in Fig. 2; those for other femoral measure-

ments are similar (not shown). For lean mass in females and

both body and lean mass in males, the subtrochanteric

mediolateral diameter yielded better models with lower

SEEs and adjusted R2 values, while for females, FHD was

the best predictor of body mass.

Although the regression coefficients for lean mass on bone

measurements were similar for males and females, in a

pooled-sex analysis, sex was highly significant when added

as a term to the model, but the interaction between sex and

bone measurement was not (results not shown). This indicates

that while the regression lines by sex are parallel, they are not

coincident, so sex-specific estimation equations are

preferable.

The stepwise regression procedure based on all three fem-

oral variables resulted in only one statistically significant mul-

tivariable equation. This equation was to predict lean mass

among women from FHD and mediolateral subtrochanteric

femoral shaft diameter, although this only reduced the SEE

by 0.2% compared with the best univariable model (data not

shown).

Discussion

Our study demonstrates that in a sample of young adults from

the region around Hyderabad, India, lean mass can be estimat-

ed from measurements of the proximal femur with an SEE of

12.2%. The estimation of bodymass is less reliable with SEEs

around 16.5%, while fat mass is only poorly estimated (SEE ≥

35.5%)—indeed, bone measurements were not significant

predictors of fat mass. It is worth noting that there is no widely

accepted or objectively defined standard for acceptable rates

of error for such estimation equations. While statistics such as

the proportion of individuals whose estimates were within 10,

15 or 20% of known values (e.g., Elliott et al. 2016a;

Lorkiewicz-Muszyńska et al. 2013; Ruff et al. 2005), these

are arbitrary thresholds. The performance of equations is best

judged by taking into account errors associated with estimates

generated for a target individual/sample and the purpose for

which the estimates are being derived.

In terms of relative accuracy, the errors associated with our

equations are similar to or smaller than those reported for

equivalent equations from other samples, although thorough

comparisons are hampered by the fact that different studies

report different measures of error associated with their equa-

tions. We therefore focus our comparisons on studies

Table 2 Demographic characteristics of the study sample

Variable Combined sex (n = 155) Females (n = 77) Males (n = 78)

Age (years) 22.7 (1.3: 20.3–25.6) 23.0 (1.3: 20.4–25.6) 22.4 (1.2: 20.3–24.9)

Height (cm) 160.3 (9.2: 138.0–180.0) 153.8 (6.4: 138.0–166.0) 166.8 (6.6: 147.0–180.0)

Body mass (kg) 51.1 (10.1: 27.6–80.5) 46.2 (8.1: 27.6–72.9) 55.9 (9.6: 35.5–80.5)

Body mass index (kg/m2) 19.7 (2.9: 13.7–28.8) 19.5 (3.0: 13.7–28.8) 20.0 (2.9: 15.4–28.7)

Lean mass (kg) 38.3 (8.6: 22.2–61.9) 31.5 (4.2: 22.2–43.9) 45.1 (6.3: 29.7–61.9)

Fat mass (kg) 11.8 (5.0: 4.0–29.0) 13.9 (4.6: 5.9–29.0) 9.7 (4.4: 4.0–23.0)

Femur head diameter (mm) 38.9 (3.2: 31.4–50.8) 36.8 (2.2: 31.4–42.0) 41.1 (2.5: 36.4–50.8)

Femur neck diameter (mm) 24.5 (2.4: 19.3–30.4) 22.8 (1.6: 19.3–26.3) 26.1 (1.8: 21.9–30.4)

Femur subtrochanter shaft diameter (mm) 22.1 (1.6: 18.5–26.4) 21.2 (1.4: 18.5–26.0) 23.0 (1.2: 20.0–26.4)

Values given as mean (standard deviation: range)
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reporting a comparable %SEE statistic. Ruff et al. (1991) re-

ported SEEs for body mass estimation of 14.4% or greater

based on FHD, neck diameter and estimated subtrochanter

cross-sectional area for a single-sex and -ancestry sample from

the USA (average age 53 years). Using distal femoral dimen-

sions in a sample of young US adults, Squyres and Ruff

(2015) reported SEEs of 11.5–12.2% for body mass, while

Ruff (2000) reported SEEs of 6–8% for estimating body mass

from bi-iliac breadth and stature, and Schaffer (2016) reported

similar errors of 5–8% for sex- and ancestry-specific equations

based on bi-iliac breadth and stature in the third US National

Health And Nutrition Examination Survey dataset.

Our young adult sample gave mostly smaller associated

errors than those reported by Ruff et al. (1991). With the

exception of sex- and ancestry-specific equations for white

females, which had %SEEs of 14.4% for body mass, SEEs

for body mass in that study ranged from 16.5–24.1%.

However, we note that there are differences between these

samples other than the age of participants whichmight explain

the difference in results. Our sample was of entirely South

Asian ancestry from a restricted region around Hyderabad

and from communities undergoing urbanisation and a transi-

tion from traditional to more westernised lifestyles. Thus

BMI, body mass and stature, and variation in these character-

istics, are likely to be relatively low in our sample compared

with Ruff et al.’s pooled-sex and -ancestry US sample. Only

mean body mass can be compared with Ruff et al. (1991), but

this was 80.8 and 72.4 kg for males and females, respectively,

in their sample, compared with 55.9 and 46.2 kg, respectively,

in our sample. Although our results are broadly consistent

with the proposal that using a young adult sample will give

more accurate body mass prediction equations, we cannot

demonstrate that this is the definitive explanation and the ef-

fects of more homogenous ancestry, lower BMI, lower body

fat and smaller stature might also be responsible. We also note

that the improvements represented by our equations were

modest compared with using distal femur measurements from

a young US adult sample (Squyres and Ruff 2015).

It is notable that equations for estimating lean mass had

lower SEEs than those for body mass, while SEEs were high

for equations to estimate fat mass. This is consistent with

results of previous studies which suggest that limb bone di-

mensions and cross-sectional properties are more closely re-

lated to lean mass than to fat mass (Baker et al. 2013;

Chevalier et al. 2018; Chumlea et al. 2002; Himes and

Bouchard 1985; LeBrasseur et al. 2012; Pomeroy et al.

2018; Reeves 2014; Semanick et al. 2005; Taes et al. 2009;

Wu et al. 2007).

The closer relationship between lean mass and bone prop-

erties may be because the greatest forces acting on bones come

from muscle action rather than general body mass effects due

to gravity (Baker et al. 2013; Beck et al. 2001; Burr 1997;

Capozza et al. 2004; Hsu et al. 2006; Petit et al. 2005;

Robling 2009; though see Ruff 2003), and/or due to shared

developmental factors affecting muscle and bone

(DiGirolamo et al. 2013; Karasik et al. 2009; Lang et al.

Table 3 Regression equations for estimating body, lean and fat mass

from measurements of the proximal femur in females

Equation r Adjusted R2 %SEE p value

Body mass

1.377 + 0. 678 × head 0.24 0.05 16.5 0.03

2.732 + 0.348 × neck 0.15 0.02 16.9 0.2

2.100 + 0.563 × subtrochanter 0.22 0.04 16.7 0.06

Lean mass

0.536 + 0.854 × head 0.37 0.12 12.5 0.001

1.573 + 0.599 × neck 0.32 0.09 12.7 0.004

0.697 + 0.899 × subtrochanter 0.44 0.19 12.0 < 0.001

Fat mass

1.276 + 2.287 × head 0.07 − 0.01 33.5 0.6

2.681–0.031 × neck 0.01 0.00 33.5 0.9

3.104–0.170 × subtrochanter 0.03 − 0.01 33.5 0.7

Note that all variables are natural logs. Raw bone diameters originally in

millimetres, and raw mass in kilogrammes

%SEE = SEE × 100 as natural log transformation of the data results in

SEEs which are already percentages when multiplied by 100 (Cole

2000; Cole and Altman 2017)

Head femoral head super-inferior diameter, Neck femoral neck minimum

superior-inferior diameter, Subtrochanter femur subtrochanter

mediolateral diameter

Table 4 Regression equations for estimating body, lean and fat mass

from measurements of the proximal femur in males

Equation r Adjusted R2 %SEE p value

Body mass

0.876 + 0.844 × head 0.30 0.08 16.3 0.007

2.219 + 0.512 × neck 0.29 0.07 16.3 0.01

0.505 + 1.117 × subtrochanter 0.36 0.12 15.9 0.001

Lean mass

0.649 + 0.848 × head 0.36 0.12 13.2 0.001

1.876 + 0.590 × neck 0.30 0.08 13.5 0.007

− 0.080 + 1.237 × subtrochanter 0.48 0.22 12.4 < 0.001

Fat mass

− 0.105 + 0.615 × head 0.08 − 0.006 44.5 0.5

− 1.088 + 1.001 × neck 0.16 0.01 44.1 0.2

0.397 + 0.568 × subtrochanter 0.07 − 0.008 44.6 0.5

Note that all variables are natural logged. Bone diameters are in

millimetres, and mass in kilogrammes

%SEE = SEE × 100 as natural log transformation of the data results in

SEEs which can be viewed as percentages when multiplied by 100

(Cole 2000; Cole and Altman 2017)

Head femoral head super-inferior diameter, Neck femoral neck minimum

superior-inferior diameter, Subtrochanter femur subtrochanter

mediolateral diameter
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2009; Mikkola et al. 2009; Seeman et al. 1996). Our results,

with those and other studies, imply that poorer correspon-

dence between body mass and bone dimensions in older,

westernised populations (Elliott et al. 2016b; Ruff et al.

1991) may be at least in part due to greater adiposity at all

ages in such populations, rather than the disruption of a func-

tional link between body mass at the end of growth and joint

size by later weight gain. Although lean mass increases with

increased body fat, the former does not keep pace with the

latter in overweight or obese individuals (Forbes 1999; Wells

and Victora 2005), and this may therefore weaken the rela-

tionship between body mass and bone properties. Studies test-

ing existing equations (Young et al. 2018) or generating new

ones (Chevalier et al. 2018) have reported improved reliability

when analyses exclude individuals who are likely to have an

unusually high or low proportion of body fat (i.e., those with

BMI outside the normal range of 18.5 to 24.9 kg/m2). These

results may indicate that the extremes of percentage body fat

are not well reflected in femoral measurements due to a weak

link between adiposity and skeletal properties.

For all measurement locations, subtrochanteric

mediolateral shaft diameter provided the best-performing

models. A note of caution is however necessary, as properties

of the proximal femoral shaft relate to body breadth (Davies

and Stock 2014; Weaver 2003), although this may be less of a

problem for body mass estimation since body breadth is itself

an important determinant of body mass (Ruff et al. 2005; Ruff

2000; Schaffer 2016). Potentially more problematic are age-

and activity-related influences on long bone shaft

morphology.

It is well accepted that shaft dimensions and cross-sectional

geometry are related to activity levels (e.g., Haapasalo et al.

2000; Pearson and Lieberman 2004; Ruff et al. 2006; Ruff and

Hayes 1983; Shaw and Stock 2009a, b; Stock and Pfeiffer

2001; Trinkaus et al. 1994) and extreme body mass

(Agostini and Ross 2011; Reeves 2014). This contrasts with

joint sizes which are thought to be fixed by the time the epiph-

ysis fuses in adolescence and to show little relation to activity

levels (Lieberman et al. 2001; Reeves 2014; Ruff 1988; Ruff

et al. 1991; though see Eckstein et al. 2002). However, the

Fig. 2 Scatterplots of body, lean

and fat mass against femur

subtrochanter mediolateral

diameter. Axes are drawn on a

natural log scale
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period of greatest responsiveness of the shaft cross-sectional

properties to mechanical loading (mass and activity) is also

widely considered to be late adolescence and early adulthood

(Bertram and Swartz 1991; Forwood and Burr 1993), and

approximately 80% of the variation in cross-sectional geom-

etry of human long bone shafts seems to be determined by

body mass (Davies 2012). Thus, while changes in body mass

and behaviour during adulthood may create some noise in the

data, they may not invalidate the use of shaft cross-sectional

properties to estimate body mass and its components.

However, body mass estimation equations based on shaft

cross-sectional properties may be problematic if applied to

populations whose activity level differs widely from that of

the reference population.

It is also known that long bone shafts undergo age-related

expansion of the periosteal margin which could influence ex-

ternal diameters (Feik et al. 2000; Garn et al. 1967; Lazenby

1990a, b; Ruff and Hayes 1983). The use of shaft dimensions

to estimate body or lean mass should therefore be cautious

until the extent of age- and activity-related influences on shaft

properties are more fully quantified and their relationship to

early adulthood and current body or lean mass (or at time of

death) are better understood.

Studies seeking to estimate body mass should consider the

choice of measurements and reference samples carefully, and

the purpose of estimating body or lean mass for a given study

needs to be taken into account when selecting an appropriate

estimation method (Pomeroy et al. 2018; Ruff et al. 2018). The

lack of plasticity in femoral head dimensions render them less

suitable for estimating body mass at the time of death, particu-

larly in older individuals who may have accumulated greater

excess body weight. However, there are circumstances where

estimating body or lean mass before the variable, age-related

accumulation of excess weight is actually of greater interest,

such as in the study of adaptive evolutionary trends in body

mass or composition, which may be more evident in young

adulthood (e.g. Hruschka et al. 2014; see Pomeroy et al. in

press for further discussion). The interpretation of what we

might consider early adult ‘peak phenotype’, when selective

pressures might be expected to be strongest and sexual dimor-

phism is greatest, is easier when less obscured by environment-

specific ‘noise’ created by later mass accumulation.

Conversely, bone shaft properties may be more appropriate

estimators where body mass at death is needed, such as in

forensic cases (though the poor correspondence with fat mass

here should still be noted). In such cases, the choice of refer-

ence sample is also likely to be more critical: equations may

give inaccurate body or lean mass estimates when applied to

study samples differing significantly in body composition

and/or activity from the reference sample. It is important that

sufficient detail concerning reference samples (including sum-

mary statistics on stature, body mass, BMI and body compo-

sition, where available) are provided when estimation

methods are described so that the suitability of the reference

sample for a given application can be readily assessed.

In order to apply our equations and convert estimates back

to original units (i.e. mass in kg), the antilog of the calculated

value should be used. While others have argued for a correc-

tion to counteract ‘detransformation bias’ (Smith 1993), this is

unnecessary since it assumes that the OLSmodel based on the

raw data is the ‘best’ model and adjusts the results of the log-

log model to more closely reflect the results of the raw data

regression. However, the log-log regression models the error

in a different way to the raw data analysis that is not necessar-

ily inferior.

The study has a number of strengths, including the fact that

the sample was composed of young adults for whom body

mass was measured (and not obtained through recall, as in

Ruff et al. 1991) and composition was estimated using a con-

sistent method. The range of statures and body mass are rela-

tively wide, and the sample also derives from a population

where marked obesity even in young adulthood is uncommon,

though not completely absent as Table 2 shows. Given the

greater proportion of body fat observed in South Asians,

values around, for example, 28 kg/m2 represent a similar level

of body fatness to a BMI of 30 kg/m2 or even greater among

Europeans (Rush et al. 2009; Tillin et al. 2015; WHO Expert

Consultation 2004). Nonetheless, the relatively low rate of

obesity may make the equations more applicable to past pop-

ulations where obesity is thought to have been less prevalent.

This could, however, be a limitation to applying the methods

in forensic cases.

Several additional caveats are warranted in interpreting the

results and applying our equations. The sample was entirely of

South Asian ancestry, and it is currently unknown whether the

relationship betweenmeasurements of the proximal femur and

body, lean and fat mass is consistent across populations of

different genetic backgrounds. The results of Ruff et al.

(1991) suggest that there may be some variation in this rela-

tionship. Therefore, our equations should be applied cautious-

ly until it has been established whether any such interpopula-

tion variation in the underlying relationship exists. The need

for population-specific stature estimation equations is well

documented and widely recognised (e.g. Auerbach and Ruff

2010; Holliday and Ruff 1997; Nat 1931; Pan 1924; Pomeroy

and Stock 2012; Stevenson 1929).

The relatively short stature and low body mass of our sam-

ple compared with other populations worldwide should also

be noted, since it is widely accepted that OLS regression equa-

tions cannot be applied to individuals falling outside the range

of the original data (e.g. Smith 2009). According to the na-

tional level data from the NCD-RisC group, India’s 1996 birth

cohort ranked 192nd and 178th out of 200 countries for mean

female and male stature, respectively (NCD Risk Factor

Collaboration 2016), and 192nd and 190th for female and

male BMI, respectively, in 2016 (NCD Risk Factor
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Collaboration 2017). Even within South Asia, urban popula-

tions have higher average BMIs than rural populations (e.g.

Ebrahim et al. 2010), so careful consideration must be given

as to whether our reference sample is sufficiently similar when

applying our equations to other populations.

Our analysis demonstrates that using DXA scans is a fea-

sible method which could be used to investigate potential

variation in the relationship between bone dimensions and

body mass and its components among groups of different

geographical origin or ancestry (see also Wheatley 2005).

The considerable number of large-scale epidemiological stud-

ies of worldwide populations where DXA scans have been

performed offer great potential in terms of suitable datasets.

In conclusion, our results show that lean mass can be pre-

dicted with smaller associated error than body mass, while fat

mass cannot be reliably predicted, and that subtrochanteric

mediolateral shaft diameter is a better predictor of lean mass

in both sexes and body mass in males only than femoral head

or neck diameter. The implication is that FHDmay not scale to

total load (body mass) as is often assumed, but that bone

properties and lean mass are linked through either forces gen-

erated by muscle or by shared genetic or developmental fac-

tors between lean mass and bone. Nonetheless, as lean mass is

the major component of body mass especially in younger

adulthood, measurements such as FHD do provide a useful

estimator of early adult or ‘ideal’ body mass. A better under-

standing of the link between lean mass and bone morphology

presents the possibility for a more nuanced investigation of

variation of body size in the past. Further testing of the way in

which femoral dimensions covary with activity, body mass,

age and ethnicity are needed to confirm the wider applicability

of equations for estimating lean and body mass generated in

this and other studies, and large-scale epidemiological studies

involving DXA scans offer datasets with wide global cover-

age. The emerging complexity of the relationships between

body mass or its components and bone properties suggests

there would be value in broadly reconsidering new approaches

to body mass estimation from the skeleton.
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