47 research outputs found

    The Enigmatic Role of C9ORF72 in Autophagy

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the loss of motor neurons resulting in a progressive and irreversible muscular paralysis. Advances in large-scale genetics and genomics have revealed intronic hexanucleotide repeat expansions in the gene encoding C9ORF72 as a main genetic cause of ALS and frontotemporal dementia (FTD), the second most common cause of early-onset dementia after Alzheimer's disease. Novel insights regarding the underlying pathogenic mechanisms of C9ORF72 seem to suggest a synergy of loss and gain of toxic function during disease. C9ORF72, thus far, has been found to be involved in homeostatic cellular pathways, such as actin dynamics, regulation of membrane trafficking, and macroautophagy. All these pathways have been found compromised in the pathogenesis of ALS. In this review, we aim to summarize recent findings on the function of C9ORF72, particularly in the macroautophagy pathway, hinting at a requirement to maintain the fine balance of macroautophagy to prevent neurodegeneration

    Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion

    Get PDF
    BACKGROUND: Plasmodium falciparum merozoites expose at their surface a large protein complex, which is composed of fragments of merozoite surface protein 1 (MSP-1; called MSP-183, MSP-130, MSP-138, and MSP-142) plus associated processing products of MSP-6 and MSP-7. During erythrocyte invasion this complex, as well as an integral membrane protein called apical membrane antigen-1 (AMA-1), is shed from the parasite surface following specific proteolysis. Components of the MSP-1/6/7 complex and AMA-1 are presently under development as malaria vaccines. METHODS: The specificities and effects of antibodies directed against MSP-1, MSP-6, MSP-7 on the growth of blood stage parasites were studied using ELISA and the pLDH-assay. To understand the mode of action of these antibodies, their effects on processing of MSP-1 and AMA-1 on the surface of merozoites were investigated. RESULTS: Antibodies targeting epitopes located throughout the MSP-1/6/7 complex interfere with shedding of MSP-1, and as a consequence prevent erythrocyte invasion. Antibodies targeting the MSP-1/6/7 complex have no effect on the processing and shedding of AMA-1 and, similarly, antibodies blocking the shedding of AMA-1 do not affect cleavage of MSP-1, suggesting completely independent functions of these proteins during invasion. Furthermore, some epitopes, although eliciting highly inhibitory antibodies, are only poorly recognized by the immune system when presented in the structural context of the intact antigen. CONCLUSIONS: The findings reported provide further support for the development of vaccines based on MSP-1/6/7 and AMA-1, which would possibly include a combination of these antigens

    Antibody responses to the merozoite surface protein-1 complex in cerebral malaria patients in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>infection causes cerebral malaria (CM) in a subset of patients with anti-malarial treatment protecting only about 70% to 80% of patients. Why a subset of malaria patients develops CM complications, including neurological sequelae or death, is still not well understood. It is believed that host immune factors may modulate CM outcomes and there is substantial evidence that cellular immune factors, such as cytokines, play an important role in this process. In this study, the potential relationship between the antibody responses to the merozoite surface protein (MSP)-1 complex (which consists of four fragments namely: MSP-1<sub>83</sub>, MSP-1<sub>30</sub>, MSP-1<sub>38 </sub>and MSP-1<sub>42</sub>), MSP-6<sub>36 </sub>and MSP-7<sub>22 </sub>and CM was investigated.</p> <p>Methods</p> <p>Peripheral blood antibody responses to recombinant antigens of the two major allelic forms of MSP-1 complex, MSP-6<sub>36 </sub>and MSP-7<sub>22 </sub>were compared between healthy subjects, mild malaria patients (MM) and CM patients residing in a malaria endemic region of central India. Total IgG and IgG subclass antibody responses were determined using ELISA method.</p> <p>Results</p> <p>The prevalence and levels of IgG and its subclasses in the plasma varied for each antigen. In general, the prevalence of total IgG, IgG1 and IgG3 was higher in the MM patients and lower in CM patients compared to healthy controls. Significantly lower levels of total IgG antibodies to the MSP-1<sub>f38</sub>, IgG1 levels to MSP-1<sub>d83</sub>, MSP-1<sub>19 </sub>and MSP-6<sub>36 </sub>and IgG3 levels to MSP-1<sub>f42 </sub>and MSP-7<sub>22 </sub>were observed in CM patients as compared to MM patients.</p> <p>Conclusion</p> <p>These results suggest that there may be some dysregulation in the generation of antibody responses to some MSP antigens in CM patients and it is worth investigating further whether perturbations of antibody responses in CM patients contribute to pathogenesis.</p

    A multifunctional serine protease primes the malaria parasite for red blood cell invasion

    Get PDF
    The malaria parasite Plasmodium falciparum replicates within an intraerythrocytic parasitophorous vacuole (PV). Rupture of the host cell allows release (egress) of daughter merozoites, which invade fresh erythrocytes. We previously showed that a subtilisin-like protease called PfSUB1 regulates egress by being discharged into the PV in the final stages of merozoite development to proteolytically modify the SERA family of papain-like proteins. Here, we report that PfSUB1 has a further role in ‘priming' the merozoite prior to invasion. The major protein complex on the merozoite surface comprises three proteins called merozoite surface protein 1 (MSP1), MSP6 and MSP7. We show that just before egress, all undergo proteolytic maturation by PfSUB1. Inhibition of PfSUB1 activity results in the accumulation of unprocessed MSPs on the merozoite surface, and erythrocyte invasion is significantly reduced. We propose that PfSUB1 is a multifunctional processing protease with an essential role in both egress of the malaria merozoite and remodelling of its surface in preparation for erythrocyte invasion

    The protein disulfide isomerase ERp57 regulates the steady-state levels of the prion protein

    Get PDF
    Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in Prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of Prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture we demonstrate that ERp57 expression directly controls the maturation and total levels of wild- type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knockout mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and non-glycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help understanding the consequences of ERp57 upregulation observed in human disease

    Altered Prion Protein Expression Pattern in CSF as a Biomarker for Creutzfeldt-Jakob Disease

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is the most frequent human Prion-related disorder (PrD). The detection of 14-3-3 protein in the cerebrospinal fluid (CSF) is used as a molecular diagnostic criterion for patients clinically compatible with CJD. However, there is a pressing need for the identification of new reliable disease biomarkers. The pathological mechanisms leading to accumulation of 14-3-3 protein in CSF are not fully understood, however neuronal loss followed by cell lysis is assumed to cause the increase in 14-3-3 levels, which also occurs in conditions such as brain ischemia. Here we investigated the relation between the levels of 14-3-3 protein, Lactate dehydrogenase (LDH) activity and expression of the prion protein (PrP) in CSF of sporadic and familial CJD cases. Unexpectedly, we found normal levels of LDH activity in CJD cases with moderate levels of 14-3-3 protein. Increased LDH activity was only observed in a percentage of the CSF samples that also exhibited high 14-3-3 levels. Analysis of the PrP expression pattern in CSF revealed a reduction in PrP levels in all CJD cases, as well as marked changes in its glycosylation pattern. PrP present in CSF of CJD cases was sensitive to proteases. The alterations in PrP expression observed in CJD cases were not detected in other pathologies affecting the nervous system, including cases of dementia and tropical spastic paraparesis/HTLV-1 associated myelopathy (HAM/TSP). Time course analysis in several CJD patients revealed that 14-3-3 levels in CSF are dynamic and show a high degree of variability during the end stage of the disease. Post-mortem analysis of brain tissue also indicated that 14-3-3 protein is upregulated in neuronal cells, suggesting that its expression is modulated during the course of the disease. These results suggest that a combined analysis of 14-3-3 and PrP expression pattern in CSF is a reliable biomarker to confirm the clinical diagnosis of CJD patients and follow disease progression

    Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis

    No full text
    Abnormal modifications to mutant superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS). Misfolding of wild-type SOD1 (SOD1(WT)) is also observed in postmortem tissue of a subset of sporadic ALS (sALS) cases, but cellular and molecular mechanisms generating abnormal SOD1(WT) species are unknown. We analyzed aberrant human SOD1(WT) species over the lifetime of transgenic mice and found the accumulation of disulfide-cross-linked high-molecular-weight SOD1(WT) aggregates during aging. Subcellular fractionation of spinal cord tissue and protein over-expression in NSC-34 motoneuron-like cells revealed that endoplasmic reticulum (ER) localization favors oxidation and disulfide-dependent aggregation of SOD1(WT). We established a pharmacological paradigm of chronic ER stress in vivo, which recapitulated SOD1(WT) aggregation in young transgenic mice. These species were soluble in nondenaturing detergents and did not react with a SOD1 conformation-specific antibody. Interestingly, SOD1(WT) aggregation under ER stress correlated with astrocyte activation in the spinal cord of transgenic mice. Finally, the disulfide-cross-linked SOD1(WT) species were also found augmented in spinal cord tissue of sALS patients, correlating with the presence of ER stress markers. Overall, this study suggests that ER stress increases the susceptibility of SOD1(WT) to aggregate during aging, operating as a possible risk factor for developing ALS.FONDAP (Fondo de Financiamiento de Centros de Investigacion en Areas Prioritarias) 15150012 Millennium Institute P09-015-F FONDECYT (Fondo Nacional de Desarrollo Cientifico y Tecnologico) 1180186 ALS Therapy Alliance 2014-F-059 Muscular Dystrophy Association 382453 Department of Defense ALS Research Program Award 81XWH-16-1-0112 FONDECYT 3130351 11150579 3110067 1150743 National Institutes of Health R01NS067206 National Institute of Neurological Disorders and Stroke (NINDS) ALS Association ALS Finding a Cure ALS ONE Angel Fund for ALS Research Celluci Endowment for ALS Research Project AL

    Low correlation between 14-3-3 protein levels and LDH activity in CSF of CJD patients.

    No full text
    <p>CSF samples from CJD patients (N = 40) and non-CJD controls (N = 16), were obtained by lumbar puncture. Then, <b>A.</b> 14-3-3 levels in CSF were analyzed by Western blot. <b>B.</b> Relative levels of 14-3-3 protein band were quantified using densitometric analysis. <b>C.</b> LDH activity was measured in each sample as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036159#s4" target="_blank">Material and Methods</a>. <b>D.</b> A correlation between 14-3-3 protein and LDH activity from panels B and C is presented. <b>E.</b> Quantitative analysis of total protein levels in CSF samples of panel A was performed. In B, C and E the red line represents the mean of all samples analyzed. Statistical significance was calculated using Student's t-test.</p
    corecore