234 research outputs found

    Analysis of HMWGS of historical set of Pakistani bread wheat varieties using SDS-PAGE

    Get PDF
    In the present study an attempt has been made to characterize thirty bread-wheat varieties of Pakistan for High Molecular Weight Glutenin Subunits (HMW- GS). Glutenin proteins form a continuous proteinaceous matrix in the cells and form a continuous viscoelastic network during the mixing process of dough development. Glutenin consists of High Molecular Weight (HMW) and Low Molecular Weight (LMW) subunits. The HMW Glutenin Subunits (HMW-GS) are chiefly vital for determining doughelasticity. The core objective of our research work was to inspect the glutenin subunits by sodium dodecyl-sulfate polyacrylamide gel-electrophoresis (SDS-PAGE) and compare the banding pattern withChinese Spring High-Molecular-Weight Glutenin Subunits (HMW-GS). The bands were numbered according to Payne's numbering system and varieties were accordingly assigned theoretical quality scores. All the tested varieties indicated null allele for gluA1 locus, 17 + 18 for gluB1 locus and 2 + 12 for gluD1 locus. This result indicating that all varieties have similar bread making quality alleles at HMWGS loci. The varieties containing 5 + 10 HMWGS allele at gluD1 locus have better bread making quality. Better bread making wheat varieties may be produced by crossing the local varieties of gluA1 locus, 17 + 18 for gluB1 locus and 2 + 12 for gluD1 locus with 5 + 10 HMWGS allele at gluD1 locus

    Efficient Photoelectrochemical Performance of Gamma Irradiated gC3N4 and its g-C3N4@BiVO4 Heterojunction for Solar Water Splitting

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recordComprehensive experimental and density functional theory simulations have been performed for the enhanced photoelectrochemical performance of gamma irradiated g-C3N4 and its heterojunction with BiVO4. The structure and morphology of g-C3N4@BiVO4 as a heterojunction were analyzed and verified from the correlation of experimental and theoretical data. It is found that gamma radiations have changed the bonding structure of g-C3N4 which ultimately reduces the optical bandgap energy. Moreover, the performance of gamma-irradiated g-C3N4 is two-fold, compared to that of non-irradiated one; increases from 3.59 to 5.86 µAcm-2 at 1.23 V versus Ag/AgCl in 0.5 M Na2SO4 electrolyte solution (pH 7). Finally, it is observed that the performance of gamma irradiated g-C3N4 in g-C3N4@BiVO4 heterojunction increased from 0.53 mA cm-2 to 1.38 mA cm-2, compared to that of the non–irradiated one. In summary, it has been concluded that gamma-irradiated g-C3N4 and its heterojunction is potentially be applied in PEC solar water splitting.National University of Malaysi

    Serum magnesium levels and acute exacerbation of chronic obstructive pulmonary disease: a retrospective study

    Get PDF
    A decrease in serum Mg+ 2 is associated with airway hyper-reactivity and impaired pulmonary function. The purpose of this study was to determine if decreased serum Mg+ 2 levels in patients with chronic obstructive pulmonary disease (COPD) are associated with acute exacerbations. In a retrospective study, the charted serum Mg+ 2 levels in 100 COPD patients were examined. These included 50 patients who presented with an acute exacerbation of COPD and 50 stable patients. Chart review was sequential within both groups. Serum Mg 2+ levels in the stable COPD patients averaged 0.91±0.10 mmol/L (mean±SD) with a 95% CI of 0.88–0.94 mmol/L. Patients undergoing an exacerbation had significantly lower serum Mg+ 2 levels (0.77±0.10 mmol/L; CI, 0.74–0.79; p< 0.0001). Logistic regression of the dichotomous outcomes as a function of serum Mg+ 2 concentration demonstrated a highly significant

    Enhanced hydrogen evolution reaction performance of anatase–rutile TiO2 heterojunction via charge transfer from rutile to anatase

    Get PDF
    This is the final version. Available on open access from the Royal Society of Chemistry via the DOI in this recordIn light of recent doubts surrounding the industrial viability of photo(electro)catalysis technology for sustainable hydrogen production, it becomes imperative to align materials development with rationalized synthesis protocols. In this study, we present an innovative technique utilizing atmospheric-pressure chemical vapor deposition (APCVD) to rapidly produce TiO2 in just 5 minutes using pure TiCl4 as the sole reagent. The resulting photoanode exhibits exceptional photoelectrochemical (PEC) water-splitting performance, achieving a photocurrent density of 2.06 mA cm−2 at 1.23 V RHE. Moreover, the photoanode demonstrates sustained operation for 16 hours, leading to the successful collection of 138 μmol of H2 and 62 μmol of O2. These remarkable results are attributed to the controlled formation of an anatase–rutile phase-junction, the presence of well-balanced oxygen vacancies, and the bifrustum nanoparticle–nanoflake structure with a unique light trapping effect and large surface area. Density functional theory calculations confirm that the water-splitting reaction primarily occurs at undercoordinated Ti and O atoms in both anatase and rutile TiO2. Notably, the calculated Gibbs free energy values for the hydrogen evolution reaction (HER) differ significantly between rutile (−0.86 eV) and anatase TiO2 (0.22 eV). In the heterojunction, charge transfer enhances the HER performance through shared electronic density, resulting in a synergistic effect that surpasses the capabilities of individual surfaces and underscores the importance of electronic interactions within the junction.Universiti Kebangsaan MalaysiaCenter of Excellence for Innovation in ChemistryProgram Management Unit for Human Resources & Institutional Development, Research and InnovationHuman Resource Development in Science Project Science Achievement Scholarship of Thailand (SAST

    Hierarchical Optimization and Grid Scheduling Model for Energy Internet: A Genetic Algorithm-Based Layered Approach

    Get PDF
    The old economic and social growth model, characterized by centralized fossil energy consumption, is progressively shifting, and the third industrial revolution, represented by new energy and Internet technology, is gaining traction. Energy Internet, as a core technology of the third industrial revolution, aims to combine renewable energy and Internet technology to promote the large-scale use and sharing of distributed renewable energy as well as the integration of multiple complex network systems, such as electricity, transportation, and natural gas. This novel technology enables power networks to save energy. However, multienergy synchronization optimization poses a significant problem. As a solution, this study proposed an optimized approach based on the concept of layered control–collaborate optimization. The proposed method allows the distributed device to plan the heat, cold, gas, and electricity in the regional system in the most efficient way possible. Moreover, the proposed optimization model is simulated using a real-number genetic algorithm. It improved the optimal scheduling between different regions and the independence of distributed equipment with minimal cost. Furthermore, the inverse system and energy and cost saving rate of the proposed method are better than those of existing methods, which prove its effectiveness

    A cost minimisation analysis of a telepaediatric otolaryngology service

    Get PDF
    Background: Paediatric ENT services in regional areas can be provided through telemedicine (tele-ENT) using videoconferencing or with a conventional outpatient department ENT service (OPD-ENT) in which patients travel to see the specialist. The objective of this study was to identify the least-cost approach to providing ENT services for paediatric outpatients

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Reconstruction of major maternal and paternal lineages of the Cape Muslim population

    Get PDF
    The earliest Cape Muslims were brought to the Cape (Cape Town - South Africa) from Africa and Asia from 1652 to 1834. They were part of an involuntary migration of slaves, political prisoners and convicts, and they contributed to the ethnic diversity of the present Cape Muslim population of South Africa. The history of the Cape Muslims has been well documented and researched however no in-depth genetic studies have been undertaken. The aim of the present study was to determine the respective African, Asian and European contributions to the mtDNA (maternal) and Y-chromosomal (paternal) gene pool of the Cape Muslim population, by analyzing DNA samples of 100 unrelated Muslim males born in the Cape Metropolitan area. A panel of six mtDNA and eight Y-chromosome SNP markers were screened using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Overall admixture estimates for the maternal line indicated Asian (0.4168) and African mtDNA (0.4005) as the main contributors. The admixture estimates for the paternal line, however, showed a predominance of the Asian contribution (0.7852). The findings are in accordance with historical data on the origins of the early Cape Muslims.Web of Scienc

    Semantic Similarity for Automatic Classification of Chemical Compounds

    Get PDF
    With the increasing amount of data made available in the chemical field, there is a strong need for systems capable of comparing and classifying chemical compounds in an efficient and effective way. The best approaches existing today are based on the structure-activity relationship premise, which states that biological activity of a molecule is strongly related to its structural or physicochemical properties. This work presents a novel approach to the automatic classification of chemical compounds by integrating semantic similarity with existing structural comparison methods. Our approach was assessed based on the Matthews Correlation Coefficient for the prediction, and achieved values of 0.810 when used as a prediction of blood-brain barrier permeability, 0.694 for P-glycoprotein substrate, and 0.673 for estrogen receptor binding activity. These results expose a significant improvement over the currently existing methods, whose best performances were 0.628, 0.591, and 0.647 respectively. It was demonstrated that the integration of semantic similarity is a feasible and effective way to improve existing chemical compound classification systems. Among other possible uses, this tool helps the study of the evolution of metabolic pathways, the study of the correlation of metabolic networks with properties of those networks, or the improvement of ontologies that represent chemical information
    corecore