4 research outputs found

    Reinforcing Effects of σ-Receptor Agonists in Rats Trained to Self-Administer Cocaine

    No full text
    σ-Receptor (σR) antagonists have been reported to block certain effects of psychostimulant drugs. The present study examined the effects of σR ligands in rats trained to self-administer cocaine (0.032–1.0 mg/kg/inj i.v.) under fixed-ratio 5-response schedules of reinforcement. Maximal rates of responding were maintained by 0.32 mg/kg/inj cocaine, or by the σR agonists, 1,3-di-(2-tolyl)guanidine (DTG; 1.0 mg/kg/inj) or 2-(4-morpholinethyl) 1-phenylcyclohexane-1-carboxylate hydrochloride (PRE-084; 0.32 mg/kg/inj), when substituted for cocaine. Lower response rates were maintained at higher and lower doses of the compounds. No dose of the σR antagonists [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD 1047), N-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine (BD 1063)] maintained responding appreciably above levels obtained when responding had no consequences. Presession treatment with σR agonists dose-dependently shifted the cocaine self-administration dose-effect curve leftward. The dopamine-uptake inhibitor, (−)-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), dose-dependently shifted the DTG and PRE-084 self-administration dose-effect curves leftward. Treatment with the σR antagonists dose-dependently decreased response rates maintained by DTG or PRE-084, but did not affect cocaine self-administration. Response rates maintained by maximally effective DTG or PRE-084 doses were decreased by σR antagonists at lower doses than those that decreased response rates maintained by food reinforcement. Although σR antagonists block some cocaine-induced effects, the lack of effect on cocaine self-administration suggests that the primary reinforcing effects of cocaine do not involve direct effects at σRs. However, the self-administration of σR agonists in cocaine-trained subjects, facilitation of cocaine self-administration by σR-agonist pretreatment, and the facilitation of σR-agonist self-administration by WIN 35,428, together suggest enhanced abuse-related effects resulting from concomitant dopaminergically mediated actions and σR-mediated actions of the drugs

    A Role for Sigma Receptors in Stimulant Self Administration and Addiction

    No full text
    Sigma1 receptors (σ1Rs) represent a structurally unique class of intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to the cell nucleus or cell membrane, and through protein-protein interactions influence several targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Several studies have demonstrated that σR antagonists block stimulant-induced behavioral effects, including ambulatory activity, sensitization, and acute toxicities. Curiously, the effects of stimulants have been blocked by σR antagonists tested under place-conditioning but not self-administration procedures, indicating fundamental differences in the mechanisms underlying these two effects. The self administration of σR agonists has been found in subjects previously trained to self administer cocaine. The reinforcing effects of the σR agonists were blocked by σR antagonists. Additionally, σR agonists were found to increase dopamine concentrations in the nucleus accumbens shell, a brain region considered important for the reinforcing effects of abused drugs. Although the effects of the σR agonist, DTG, on dopamine were obtained at doses that approximated those that maintained self administration behavior those of another agonist, PRE-084 required higher doses. The effects of DTG were antagonized by non-selective or a preferential σ2R antagonist but not by a preferential σ1R antagonist. The effects of PRE-084 on dopamine were insensitive to σR antagonists. The data suggest that the self administration of σR agonists is independent of dopamine and the findings are discussed in light of a hypothesis that cocaine has both intracellular actions mediated by σRs, as well as extracellular actions mediated through conventionally studied mechanisms. The co-activation and potential interactions among these mechanisms, in particular those involving the intracellular chaperone σRs, may lead to the pernicious addictive effects of stimulant drugs
    corecore