63 research outputs found

    Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Get PDF
    Abstract Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51), we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a grass model for investigations of these enzymes and their diverse roles in planta. Insights gained from Brachypodium will inform translational research studies, with applications for the improvement of cereal crops and bioenergy grasses

    Selection and phenotypic characterization of a core collection of <i>Brachypodium distachyon</i> inbred lines

    Get PDF
    BACKGROUND: The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. RESULTS: We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. CONCLUSION: These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation

    Population Structure in the Model Grass Brachypodium distachyon Is Highly Correlated with Flowering Differences across Broad Geographic Areas

    Get PDF
    The small, annual grass Brachypodium distachyon (L.) Beauv., a close relative of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in B. distachyon by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 B. distachyon, seven B. hybridum, and three B. stacei accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Over 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the B. hybridum genome, which appears as a mosaic of B. distachyon-like and B. stacei-like sequences. Analysis of more than 50,000 SNPs for the B. distachyon accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between B. distachyon populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within B. distachyon populations. Our characterization elucidates genes underlying population differences, expands the germplasm resources available for Brachypodium, and illustrates the feasibility and limitations of GWAS in this model grass

    Extensive gene content variation in the <i>Brachypodium distachyon</i> pan-genome correlates with population structure

    Get PDF
    13 Pags.- 6 Figs. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holderWhile prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.The work conducted by the US DOE Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract no. DE-AC02-05CH11231. D.P. W. and R.A. were funded in part by the National Science Foundation (grant no. IOS–1258126), and the Great Lakes Bioenergy Research Center (Department of Energy Biological and Environmental Research Office of Science grant no. DE– FCO2–07ER64494). TEJ and DLDM were supported by NSF PGRP grant IOS-0922457. P.C. and B.C.M. were funded by Spanish MINECO (CGL2012-39953-C02-01 and CGL2016-79790-P). B.C.M. was partially funded by DGA—Obra Social La Caixa (grant number GA-LC-059-2011) and Spanish MINECO (AGL2013-48756-R, CSIC13-4E-2490). PC was partially funded by Spanish Aragon Government-European Social Fund (Bioflora).Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Genomic analyses inform on migration events during the peopling of Eurasia.

    Get PDF
    High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.Support was provided by: Estonian Research Infrastructure Roadmap grant no 3.2.0304.11-0312; Australian Research Council Discovery grants (DP110102635 and DP140101405) (D.M.L., M.W. and E.W.); Danish National Research Foundation; the Lundbeck Foundation and KU2016 (E.W.); ERC Starting Investigator grant (FP7 - 261213) (T.K.); Estonian Research Council grant PUT766 (G.C. and M.K.); EU European Regional Development Fund through the Centre of Excellence in Genomics to Estonian Biocentre (R.V.; M.Me. and A.Me.), and Centre of Excellence for Genomics and Translational Medicine Project No. 2014-2020.4.01.15-0012 to EGC of UT (A.Me.) and EBC (M.Me.); Estonian Institutional Research grant IUT24-1 (L.S., M.J., A.K., B.Y., K.T., C.B.M., Le.S., H.Sa., S.L., D.M.B., E.M., R.V., G.H., M.K., G.C., T.K. and M.Me.) and IUT20-60 (A.Me.); French Ministry of Foreign and European Affairs and French ANR grant number ANR-14-CE31-0013-01 (F.-X.R.); Gates Cambridge Trust Funding (E.J.); ICG SB RAS (No. VI.58.1.1) (D.V.L.); Leverhulme Programme grant no. RP2011-R-045 (A.B.M., P.G. and M.G.T.); Ministry of Education and Science of Russia; Project 6.656.2014/K (S.A.F.); NEFREX grant funded by the European Union (People Marie Curie Actions; International Research Staff Exchange Scheme; call FP7-PEOPLE-2012-IRSES-number 318979) (M.Me., G.H. and M.K.); NIH grants 5DP1ES022577 05, 1R01DK104339-01, and 1R01GM113657-01 (S.Tis.); Russian Foundation for Basic Research (grant N 14-06-00180a) (M.G.); Russian Foundation for Basic Research; grant 16-04-00890 (O.B. and E.B); Russian Science Foundation grant 14-14-00827 (O.B.); The Russian Foundation for Basic Research (14-04-00725-a), The Russian Humanitarian Scientific Foundation (13-11-02014) and the Program of the Basic Research of the RAS Presidium “Biological diversity” (E.K.K.); Wellcome Trust and Royal Society grant WT104125AIA & the Bristol Advanced Computing Research Centre (http://www.bris.ac.uk/acrc/) (D.J.L.); Wellcome Trust grant 098051 (Q.A.; C.T.-S. and Y.X.); Wellcome Trust Senior Research Fellowship grant 100719/Z/12/Z (M.G.T.); Young Explorers Grant from the National Geographic Society (8900-11) (C.A.E.); ERC Consolidator Grant 647787 ‘LocalAdaptatio’ (A.Ma.); Program of the RAS Presidium “Basic research for the development of the Russian Arctic” (B.M.); Russian Foundation for Basic Research grant 16-06-00303 (E.B.); a Rutherford Fellowship (RDF-10-MAU-001) from the Royal Society of New Zealand (M.P.C.)

    The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis

    No full text
    In eukaryotes, Polycomb group (PcG) and trithorax group (trxG) factors oppositely regulate gene transcription during development through histone modifications, with PcG factors repressing and trxG factors activating the expression of their target genes. Although plant trxG factors regulate many developmental and physiological processes, their downstream targets are poorly characterized. Here we use transcriptomics to identify genome-wide targets of the Arabidopsis thaliana trxG factor ULTRAPETALA1 (ULT1) during vegetative and reproductive development and compare them with those of the PcG factor CURLY LEAF (CLF). We find that genes involved in development and transcription regulation are over-represented among ULT1 target genes. In addition, stress response genes and defense response genes such as those in glucosinolate metabolic pathways are enriched, revealing a previously unknown role for ULT1 in controlling biotic and abiotic response pathways. Finally, we show that many ULT1 target genes can be oppositely regulated by CLF, suggesting that ULT1 and CLF may have antagonistic effects on plant growth and development in response to various endogenous and environmental cues
    corecore