8 research outputs found

    Cortico-limbic morphology separates tinnitus from tinnitus distress

    Get PDF
    Tinnitus is a common auditory disorder characterized by a chronic ringing or buzzing “in the ear.”Despite the auditory-perceptual nature of this disorder, a growing number of studies have reported neuroanatomical differences in tinnitus patients outside the auditory-perceptual system. Some have used this evidence to characterize chronic tinnitus as dysregulation of the auditory system, either resulting from inefficient inhibitory control or through the formation of aversive associations with tinnitus. It remains unclear, however, whether these “non-auditory” anatomical markers of tinnitus are related to the tinnitus signal itself, or merely to negative emotional reactions to tinnitus (i.e., tinnitus distress). In the current study, we used anatomical MRI to identify neural markers of tinnitus, and measured their relationship to a variety of tinnitus characteristics and other factors often linked to tinnitus, such as hearing loss, depression, anxiety, and noise sensitivity. In a new cohort of participants, we confirmed that people with chronic tinnitus exhibit reduced gray matter in ventromedial prefrontal cortex (vmPFC) compared to controls matched for age and hearing loss. This effect was driven by reduced cortical surface area, and was not related to tinnitus distress, symptoms of depression or anxiety, noise sensitivity, or other factors. Instead, tinnitus distress was positively correlated with cortical thickness in the anterior insula in tinnitus patients, while symptoms of anxiety and depression were negatively correlated with cortical thickness in subcallosal anterior cingulate cortex (scACC) across all groups. Tinnitus patients also exhibited increased gyrification of dorsomedial prefrontal cortex (dmPFC), which was more severe in those patients with constant (vs. intermittent) tinnitus awareness. Our data suggest that the neural systems associated with chronic tinnitus are different from those involved in aversive or distressed reactions to tinnitus

    The relationship between biological and psychosocial risk factors and resting‐state functional connectivity in 2‐monthold Bangladeshi infants: A feasibility and pilot study

    Get PDF
    Childhood poverty has been associated with structural and functional alterations in the developing brain. However, poverty does not alter brain development directly, but acts through associated biological or psychosocial risk factors (e.g. malnutrition, family conflict). Yet few studies have investigated risk factors in the context of infant neurodevelopment, and none have done so in low‐resource settings such as Bangladesh, where children are exposed to multiple, severe biological and psychosocial hazards. In this feasibility and pilot study, usable resting‐state fMRI data were acquired in infants from extremely poor (n = 16) and (relatively) more affluent (n = 16) families in Dhaka, Bangladesh. Whole‐brain intrinsic functional connectivity (iFC) was estimated using bilateral seeds in the amygdala, where iFC has shown susceptibility to early life stress, and in sensory areas, which have exhibited less susceptibility to early life hazards. Biological and psychosocial risk factors were examined for associations with iFC. Three resting‐state networks were identified in within‐group brain maps: medial temporal/striatal, visual, and auditory networks. Infants from extremely poor families compared with those from more affluent families exhibited greater (i.e. less negative) iFC in precuneus for amygdala seeds; however, no group differences in iFC were observed for sensory area seeds. Height‐for‐age, a proxy for malnutrition/infection, was not associated with amygdala/precuneus iFC, whereas prenatal family conflict was positively correlated. Findings suggest that it is feasible to conduct infant fMRI studies in low‐resource settings. Challenges and practical steps for successful implementations are discussed

    An activation likelihood estimation meta-analysis study of simple motor movements in older and young adults

    No full text
    The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum, but differed from young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders

    Diffusion Imaging of Auditory and Auditory-Limbic Connectivity in Tinnitus: Preliminary Evidence and Methodological Challenges

    No full text
    Subjective tinnitus, or “ringing in the ears,” is perceived by 10 to 15 percent of the adult population and causes significant suffering in a subset of patients. While it was originally thought of as a purely auditory phenomenon, there is increasing evidence that the limbic system influences whether and how tinnitus is perceived, far beyond merely determining the patient’s emotional reaction to the phantom sound. Based on functional imaging and electrophysiological data, recent articles frame tinnitus as a “network problem” arising from abnormalities in auditory-limbic interactions. Diffusion-weighted magnetic resonance imaging is a noninvasive method for investigating anatomical connections in vivo. It thus has the potential to provide anatomical evidence for the proposed changes in auditory-limbic connectivity. However, the few diffusion imaging studies of tinnitus performed to date have inconsistent results. In the present paper, we briefly summarize the results of previous studies, aiming to reconcile their results. After detailing analysis methods, we then report findings from a new dataset. We conclude that while there is some evidence for tinnitus-related increases in auditory and auditory-limbic connectivity that counteract hearing-loss related decreases in auditory connectivity, these results should be considered preliminary until several technical challenges have been overcome

    Home language and literacy environment and its relationship to socioeconomic status and white matter structure in infancy

    No full text
    The home language and literacy environment (HLLE) in infancy has been associated with subsequent pre-literacy skill development and HLLE at preschool-age has been shown to correlate with white matter organization in tracts that subserve pre-reading and reading skills. Furthermore, childhood socioeconomic status (SES) has been linked with both HLLE and white matter organization. It is important to understand whether the relationships between environmental factors such as HLLE and SES and white matter organization can be detected as early as infancy, as this period is characterized by rapid brain development that may make white matter pathways particularly susceptible to these early experiences. Here, we hypothesized that HLLE (1) relates to white matter organization in pre-reading and reading-related tracts in infants, and (2) mediates a link between SES and white matter organization. To test these hypotheses, infants (mean age: 8.6 ± 2.3 months, N = 38) underwent diffusion-weighted imaging MRI during natural sleep. Image processing was performed with an infant-specific pipeline and fractional anisotropy (FA) was estimated from the arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF) bilaterally using the baby automated fiber quantification method. HLLE was measured with the Reading subscale of the StimQ (StimQ-Reading) and SES was measured with years of maternal education. Self-reported maternal reading ability was also quantified and applied to our statistical models as a proxy for confounding genetic effects. StimQ-Reading positively correlated with FA in left AF and to maternal education, but did not mediate the relationship between them. Taken together, these findings underscore the importance of considering HLLE from the start of life and may inform novel prevention and intervention strategies to support developing infants during a period of heightened brain plasticity

    White matter in infancy is prospectively associated with language outcomes in kindergarten

    No full text
    Language acquisition is of central importance to child development. Although this developmental trajectory is shaped by experience postnatally, the neural basis for language emerges prenatally. Thus, a fundamental question remains: do structural foundations for language in infancy predict long-term language abilities? Longitudinal investigation of 40 children from infancy to kindergarten reveals that white matter in infancy is prospectively associated with subsequent language abilities, specifically between: (i) left arcuate fasciculus and phonological awareness and vocabulary knowledge, (ii) left corticospinal tract and phonological awareness, and bilateral corticospinal tract with phonological memory; controlling for age, cognitive, and environmental factors. Findings link white matter in infancy with school-age language abilities, suggesting that white matter organization in infancy sets a foundation for long-term language development
    corecore