21 research outputs found

    CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums

    Get PDF
    Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums

    Encapsulation of vitexin-rhamnoside based on zein/pectin nanoparticles improved its stability and bioavailability

    No full text
    To improve the solubility, stability, and bioavailability of vitexin-rhamnoside (VR) isolated from hawthorn, it was encapsulated by the zein-pectin nanoparticles system. When the mass ratio of zein to pectin was 1:4, the particle size of nanoparticles was 222.7 nm, and the encapsulation efficiency of VR was 67%. Analysis with the scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) revealed that the zein-VR-pectin nanoparticles were spherical and uniformly distributed. The hydrogen bonding and electrostatic interactions were the main forces to assemble the nanoparticles. The nanoparticle had good stability at pH 3–8.5 with particle sizes ranging from 234 to 251 nm, and the nanoparticles were able to resist the relatively lower ionic strength. In vitro simulated digestion and rat in vivo intestinal perfusion experiments showed that the nanoparticles exhibited significant slow-release properties and the highest absorption rate in the duodenal segment of rats, with Ka and Papp of 0.830 ± 0.11 and 17.004 ± 1.09. These results provided a theoretical and technological approach for the construction of flavonoids delivery system with slow-release properties and improved bioavailability

    Robust Nitro-Functionalized {Zn<sub>3</sub>}‑Organic Framework for Excellent Catalytic Performance on Cycloaddition Reaction of CO<sub>2</sub> with Epoxides and Knoevenagel Condensation

    No full text
    Adjusting the Lewis acid–base sites in MOF-based catalysts to meet the demand for catalytic CO2 chemical fixation is a huge challenge. Herein, a highly robust rectilinear {Zn3}-based metal–organic framework of {[Zn3(TNTNB)2(4,4′-bip)(H2O)2]·5DMF·9H2O}n (NUC-80) was generalized from the solvothermal condition (H3TNTNB = 1,3,5-tri(3-nitro-4-carboxyphenyl)-2,4,6-trinitrobenzene, 4,4′-bip = 4,4′-bipyridine). Activated NUC-80a not only owns the large void volume (58%) and two kinds of solvent-accessible channels: rhombic-like (ca. 14.24 × 14.57 Å) along a axis and rectangular-like (ca. 11.72 × 14.48 Å) along b axis, but also is functionalized by rich metal sites and plentiful nitro groups on its inner surface. Performed catalytic experiments confirmed that NUC-80a could efficiently catalyze the cycloaddition reaction of CO2 with epoxides and Knoevenagel condensations of aldehydes and malononitrile under mild conditions with a high turnover frequency (TOF). Hence, this work provides a nitro-functionalized metal cluster-based nanoporous metal–organic framework with a wide range of potential applications such as catalysis, gas adsorption, and separation

    A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations

    No full text
    International audienceCurrently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc
    corecore