35 research outputs found

    In-situ and invasive carcinoma within a phyllodes tumor associated with lymph node metastases

    Get PDF
    BACKGROUND: Phyllodes tumors (cystosarcoma phyllodes) are uncommon lesions in the female breast. Rarely, the occurrence of carcinoma within a phyllodes tumor has been reported in the literature, but has never been associated with lymph node metastases. CASE PRESENTATION: A 26-year-old woman presented with a firm, mobile, non-tender mass in the left breast and palpable lymph nodes in the left axilla. The excised lesion appeared well circumscribed and lobulated, with variable fleshy and firm areas. Microscopic examination showed a circumscribed fibroepithelial lesion with a well developed leaf-like architecture, in keeping with a benign phyllodes tumor. The epithelial component showed extensive high grade ductal carcinoma in-situ (DCIS) and invasive carcinoma of no special type, located entirely within the phyllodes tumor. Subsequent axillary lymph node dissection revealed metastatic carcinoma in four lymph nodes. CONCLUSIONS: Although rare, phyllodes tumors may harbor DCIS and invasive carcinoma, with potential for lymph node metastasis

    In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma

    Get PDF
    Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A Modular Approach to Arylazo-1,2,3-triazole Photoswitches

    No full text

    A Modular Approach to Arylazo-1,2,3-triazole Photoswitches

    No full text
    Azoheteroarenes make up an emerging class of photoswitchable compounds with unique photophysical properties and advantages over traditional azobenzenes. Therefore, methods for synthesizing azoheteroarenes are highly desirable. Here, we utilize azide-alkyne click chemistry to access arylazo-1,2,3-triazoles, a previously unexplored class of azoheteroarenes that exhibit high thermal stabilities and near-quantitative bidirectional photoconversion. Controlling the catalyst or 1,3-dipole grants access to both regioisomeric arylazotriazoles and arylazoisoxazoles, highlighting the versatility of our approach

    In-situ and invasive carcinoma within a phyllodes tumor associated with lymph node metastases

    No full text
    Abstract Background Phyllodes tumors (cystosarcoma phyllodes) are uncommon lesions in the female breast. Rarely, the occurrence of carcinoma within a phyllodes tumor has been reported in the literature, but has never been associated with lymph node metastases. Case presentation A 26-year-old woman presented with a firm, mobile, non-tender mass in the left breast and palpable lymph nodes in the left axilla. The excised lesion appeared well circumscribed and lobulated, with variable fleshy and firm areas. Microscopic examination showed a circumscribed fibroepithelial lesion with a well developed leaf-like architecture, in keeping with a benign phyllodes tumor. The epithelial component showed extensive high grade ductal carcinoma in-situ (DCIS) and invasive carcinoma of no special type, located entirely within the phyllodes tumor. Subsequent axillary lymph node dissection revealed metastatic carcinoma in four lymph nodes. Conclusions Although rare, phyllodes tumors may harbor DCIS and invasive carcinoma, with potential for lymph node metastasis

    Calculated oxidation potentials predict reactivity in Baeyer–Mills reactions

    No full text
    Azobenzenes are widely used as dyes and photochromic compounds, with the Baeyer-Mills reaction serving as the most common method for their preparation. This transformation is often plagued by low yields due to the formation of undesired azoxybenzene. Here, we explore electronic effects dictating the formation of the azoxybenzene side-product. Using calculated oxidation potentials, we were able to predict reaction outcomes and improve reaction efficiency simply by modulating the oxidation potential of the arylamine component
    corecore