1,035 research outputs found

    Comparison of data on Mutation Frequencies of Mice Caused by Radiation - Low Dose Model -

    Full text link
    We propose LD(Low Dose) model, the extension of LDM model which was proposed in the previous paper [Y. Manabe et al.: J. Phys. Soc. Jpn. 81 (2012) 104004] to estimate biological damage caused by irradiation. LD model takes account of all the considerable effects including cell death effect as well as proliferation, apoptosis, repair. As a typical example of estimation, we apply LD model to the experiment of mutation frequency on the responses induced by the exposure to low levels of ionizing radiation. The most famous and extensive experiments are those summarized by Russell and Kelly [Russell, W. L. & Kelly, E. M: Proc. Natl Acad. Sci. USA 79 (1982) 539-541], which are known as 'Mega-mouse project'. This provides us with important information of the frequencies of transmitted specific-locus mutations induced in mouse spermatogonia stem-cells. It is found that the numerical results of the mutation frequency of mice are in reasonable agreement with the experimental data: the LD model reproduces the total dose and dose rate dependence of data reasonably. In order to see such dose-rate dependence more explicitly, we introduce the dose-rate effectiveness factor (DREF). This represents a sort of preventable effects such as repair, apoptosis and death of broken cells, which are to be competitive with proliferation effect of broken cells induced by irradiation.Comment: subimitting to J. Phys. Soc. Jpn, 32 pages, 8 figure

    Evolution of the Dust Coma in Comet 67P/Churyumov-Gerasimenko Before 2009 Perihelion

    Full text link
    Comet 67P/Churyumov-Gerasimenko is the main target of ESA's Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {\it Philae}, it is necessary necessary to know the conditions in the coma. Study the dust environment, including the dust production rate and its variations along its preperihelion orbit. The comet was observed during its approach to the Sun on four epochs between early-June 2008 and mid-January 2009, over a large range of heliocentric distances that will be covered by the mission in 2014. An anomalous enhancement of the coma dust density was measured towards the comet nucleus. The scalelength of this enhancement increased with decreasing heliocentric distance of the comet. This is interpreted as a result of an unusually slow expansion of the dust coma. Assuming a spherical symmetric coma, the average amount of dust as well as its ejection velocity have been derived. The latter increases exponentially with decreasing heliocentric distance (\rh), ranging from about 1 m/s at 3 AU to about 25-35 m/s at 1.4 AU. Based on these results we describe the dust environment at those nucleocentric distances at which the spacecraft will presumably be in orbit. Astronomy and Astrophysics, in pressComment: 5 pages, 4 figure

    Long-Term Survival in Adult Neuroblastoma with Multiple Recurrences

    Get PDF
    Neuroblastoma (NB) rarely occurs in adults, and less than 10% of the cases occur in patients older than 10 years. Currently, there are no standard treatment guidelines for adult NB patients. We report the case of a young man suffering from NB in adulthood with multiple recurrences. Treatment included multiple resections, chemotherapy, and radiotherapy. This patient remains free of clinical disease more than 7 years after diagnosis

    Structure and dynamics of ring polymers: entanglement effects because of solution density and ring topology

    Full text link
    The effects of entanglement in solutions and melts of unknotted ring polymers have been addressed by several theoretical and numerical studies. The system properties have been typically profiled as a function of ring contour length at fixed solution density. Here, we use a different approach to investigate numerically the equilibrium and kinetic properties of solutions of model ring polymers. Specifically, the ring contour length is maintained fixed, while the interplay of inter- and intra-chain entanglement is modulated by varying both solution density (from infinite dilution up to \approx 40 % volume occupancy) and ring topology (by considering unknotted and trefoil-knotted chains). The equilibrium metric properties of rings with either topology are found to be only weakly affected by the increase of solution density. Even at the highest density, the average ring size, shape anisotropy and length of the knotted region differ at most by 40% from those of isolated rings. Conversely, kinetics are strongly affected by the degree of inter-chain entanglement: for both unknots and trefoils the characteristic times of ring size relaxation, reorientation and diffusion change by one order of magnitude across the considered range of concentrations. Yet, significant topology-dependent differences in kinetics are observed only for very dilute solutions (much below the ring overlap threshold). For knotted rings, the slowest kinetic process is found to correspond to the diffusion of the knotted region along the ring backbone.Comment: 17 pages, 11 figure

    Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015

    Get PDF
    Context. Comet 67P/Churyumov-Gerasimenko was selected in 2003 as the new target of the Rosetta mission. It has since been the subject of a detailed campaign of observations to characterise its nucleus and activity. Aims. We present previously unpublished data taken around the start of activity of the comet in 2007/8, before its last perihelion passage. We constrain the time of the start of activity, and combine this with other data taken throughout the comet’s orbit to make predictions for its likely behaviour during 2014/5 while Rosetta is operating. Methods. A considerable difficulty in observing 67P during the past years has been its position against crowded fields towards the Galactic centre for much of the time. The 2007/8 data presented here were particularly difficult, and the comet will once again be badly placed for Earth-based observations in 2014/5. We make use of the difference image analysis technique, which is commonly used in variable star and exoplanet research, to remove background sources and extract images of the comet. In addition, we reprocess a large quantity of archival images of 67P covering its full orbit, to produce a heliocentric lightcurve. By using consistent reduction, measurement and calibration techniques we generate a remarkably clean lightcurve, which can be used to measure a brightness-distance relationship and to predict the future brightness of the comet. Results. We determine that the comet was active around November 2007, at a pre-perihelion distance from the Sun of 4.3 AU. The comet will reach this distance, and probably become active again, in March 2014. We find that the dust brightness can be well described by Afρ ∝ r-3.2 pre-perihelion and ∝ r-3.4 post-perihelion, and that the comet has a higher dust-to-gas ratio than average, with log (Afρ/Q(H2O)) = − 24.94 ± 0.22 cm s molecule-1 at r < 2 AU. A model fit to the photometric data suggests that only a small fraction (1.4%) of the surface is active

    The Re-Emergence of Percutaneous Fasciotomy in the Management of Dupuytren’s Disease

    Get PDF
    Dupuytren’s disease is a common condition. Its management has gradually evolved but still remains a source of much controversy. Recently there has been a resurgence in the popularity of percutaneous needle fasciotomy. It is a simple method that uses a hypodermic needle as a scalpel blade. It is usually performed in the out-patient setting under local anaesthesia without a tourniquet. It has few complications and allows almost immediate return to work with few restrictions

    Determining the dust environment of an unknown comet for a spacecraft flyby: The case of ESA’s Comet Interceptor mission

    Get PDF
    Context. An assessment of the dust environment of a comet is needed for data analysis and planning spacecraft missions, such as ESA’s Comet Interceptor (CI) mission. The distinctive feature of CI is that the target object will be defined shortly before (or even after) launch; as a result, the properties of the nucleus and dust environment are poorly constrained, and therefore make the assessment of the dust environment challenging. Aims. The main goal of the work is to provide realistic estimations of a dust environment based on very general parameters of possible target objects. Methods. Contemporary numerical models of a dusty-gas coma were used to obtain spatial distribution of dust for a given set of parameters. By varying parameters within a range of possible values, we obtained an ensemble of possible dust distributions. Then, this ensemble was statistically evaluated in order to define the most probable cases and hence reduce the dispersion. This ensemble can not only be used to estimate the likely dust abundance along a flyby trajectory of a spacecraft, for example, but also to quantify the associated uncertainty. Results. We present a methodology of the dust environment assessment for the case when the target comet is not known beforehand (or when its parameters are known with large uncertainty). We provide an assessment of dust environment for the CI mission. We find that the lack of knowledge of any particular comet results in very large uncertainties (~3 orders of magnitude) for the dust densities within the coma. The most sensitive parameters affecting the dust densities are the dust size distribution, the dust production rate, and coma brightness, often quantified by Afρ. Further, the conversion of a coma’s brightness (Afρ) to a dust production rate is poorly constrained. The dust production rate can only be estimated down to an uncertainty of ~0.5 orders of magnitude if the dust size distribution is known in addition to the Afρ. Conclusions. To accurately predict the dust environment of a poorly known comet, a statistical approach needs to be taken to properly reflect the uncertainties. This can be done by calculating an ensemble of comae covering all possible combinations within parameter space as shown in this work
    corecore