78 research outputs found

    Ethical Data Release in Genome-Wide Association Studies in Developing Countries

    Get PDF
    Michael Parker and colleagues discuss the ethical issues associated with data release from genome-wide association studies in developing countries

    The genetic risk of acute seizures in African children with falciparum malaria.

    Get PDF
    PURPOSE: It is unclear why some children with falciparum malaria develop acute seizures and what determines the phenotype of seizures. We sought to determine if polymorphisms of malaria candidate genes are associated with acute seizures. METHODS: Logistic regression was used to investigate genetic associations with malaria-associated seizures (MAS) and complex MAS (repetitive, prolonged, or focal seizures) in four MalariaGEN African sites, namely: Blantyre, Malawi; Kilifi, Kenya; Kumasi, Ghana; and Muheza, Tanzania. The analysis was repeated for five inheritance models (dominant, heterozygous, recessive, additive, and general) and adjusted for potential confounders and multiple testing. KEY FINDINGS: Complex phenotypes of seizures constituted 71% of all admissions with MAS across the sites. MAS were strongly associated with cluster of differentiation-ligand-rs3092945 in females in Kilifi (p = 0.00068) and interleukin (IL)-17 receptor E-rs708567 in the pooled analysis across the sites (p = 0.00709). Complex MAS were strongly associated with epidermal growth factor module-containing mucin-like hormone receptor (EMR)1-rs373533 in Kumasi (p = 0.00033), but none in the pooled analysis. Focal MAS were strongly associated with IL-20 receptor A-rs1555498 in Muheza (p = 0.00016), but none in the pooled analysis. Prolonged MAS were strongly associated with complement receptor 1-rs17047660 in Kilifi (p = 0.00121) and glucose-6-phosphate dehydrogenase-rs1050828 in females in the pooled analysis (p = 0.00155). Repetitive MAS were strongly associated with EMR1-rs373533 in Kumasi (p = 0.00003) and cystic fibrosis transmembrane conductance receptor-rs17140229 in the pooled analysis (p = 0.00543). MAS with coma/cerebral malaria were strongly associated with EMR1-rs373533 in Kumasi (p = 0.00019) and IL10-rs3024500 in the pooled analysis across the sites (p = 0.00064). SIGNIFICANCE: We have identified a number of genetic associations that may explain the risk of seizures in >2,000 cases admitted to hospitals with MAS across four sites in Africa. These associations differed according to phenotype of seizures and site

    Malaria, Intestinal Helminths and Other Risk Factors for Stillbirth in Ghana

    Get PDF
    Objective. The objective of the study was to assess Plasmodium/intestinal helminth infection in pregnancy and other risk factors for stillbirth in Ghana. Methods. A cross-sectional study of women presenting for delivery in two hospitals was conducted during November-December 2006. Data collected included sociodemographic information, medical and obstetric histories, and anthropometric measures. Laboratory investigations for the presence of Plasmodium falciparum and intestinal helminths, and tests for hemoglobin levels were also performed. Results. The stillbirth rate was relatively high in this population (5%). Most of the stillbirths were fresh and 24% were macerated. When compared to women with no malaria, women with malaria had increased risk of stillbirth (OR = 1.9, 95% CI = 1.2–9.3). Other factors associated with stillbirth were severe anemia, low serum folate concentration, past induced abortion, and history of stillbirth. Conclusion. The fact that most of the stillbirths were fresh suggests that higher quality intrapartum care could reduce stillbirth rates

    Central Nervous System Virus Infection in African Children with Cerebral Malaria

    Get PDF
    We aimed to identify the contribution of central nervous system (CNS) viral coinfection to illness in African children with retinopathy-negative or retinopathy-positive cerebral malaria (CM). We collected cerebrospinal fluid (CSF) from 272 children with retinopathy-negative or retinopathy-positive CM and selected CSF from 111 of these children (38 retinopathy positive, 71 retinopathy negative, 2 retinopathy unknown) for analysis by metagenomic next-generation sequencing. We found CSF viral coinfections in 7/38 (18.4%) retinopathy-positive children and in 18/71 (25.4%) retinopathy-negative children. Excluding HIV-1, human herpesviruses (HHV) represented 61% of viruses identified. Excluding HIV-1, CNS viral coinfection was equally likely in children who were retinopathy positive and retinopathy negative (P = 0.1431). Neither mortality nor neurological morbidity was associated with the presence of virus (odds ratio [OR] = 0.276, 95% CI: 0.056-1.363). Retinopathy-negative children with a higher temperature, lower white blood cell count, or being dehydrated were more likely to have viral coinfection. Level of consciousness at admission was not associated with CNS viral coinfection in retinopathy-negative children. Viral CNS coinfection is unlikely to contribute to coma in children with CM. The herpesviruses other than herpes simplex virus may represent incidental bystanders in CM, reactivating during acute malaria infection

    Safety and immunogenicity of the RTS,S/AS01 malaria vaccine in infants and children identified as HIV-infected during a randomized trial in sub-Saharan Africa

    Get PDF
    Background: We assessed the safety and immunogenicity of the RTS,S/AS01 malaria vaccine in a subset of children identified as HIV-infected during a large phase III randomized controlled trial conducted in seven sub-Saharan African countries. Methods: Infants 6–12 weeks and children 5–17 months old were randomized to receive 4 RTS,S/AS01 doses (R3R group), 3 RTS,S/AS01 doses plus 1 comparator vaccine dose (R3C group), or 4 comparator vaccine doses (C3C group) at study months 0, 1, 2 and 20. Infants and children with WHO stage III/IV HIV disease were excluded but HIV testing was not routinely performed on all participants; our analyses included children identified as HIV-infected based on medical history or clinical suspicion and confirmed by polymerase chain reaction or antibody testing. Serious adverse events (SAEs) and anticircumsporozoite (CS) antibodies were assessed. Results: Of 15459 children enrolled in the trial, at least 1953 were tested for HIV and 153 were confirmed as HIV-infected (R3R: 51; R3C: 54; C3C: 48). Among these children, SAEs were reported for 92.2% (95% CI: 81.1–97.8) in the R3R, 85.2% (72.9–93.4) in the R3C and 87.5% (74.8–95.3) in the C3C group over a median follow-up of 39.3, 39.4 and 38.3 months, respectively. Fifteen HIV-infected participants in each group (R3R: 29.4%, R3C: 27.8%, C3C: 31.3%) died during the study. No deaths were considered vaccinationrelated. In a matched case-control analysis, 1 month post dose 3 anti-CS geometric mean antibody concentrations were 193.3 EU/mL in RTS,S/AS01-vaccinated HIV-infected children and 491.5 EU/mL in RTS,S/ AS01-vaccinated immunogenicity controls with unknown or negative HIV status (p = 0.0001). Conclusions: The safety profile of RTS,S/AS01 in HIV-infected children was comparable to that of the comparator (meningococcal or rabies) vaccines. RTS,S/AS01 was immunogenic in HIV-infected children but antibody concentrations were lower than in children with an unknown or negative HIV status

    Immunogenicity of the RTS,S/AS01 Malaria Vaccine and\ud Implications for Duration of Vaccine Efficacy: Secondary\ud Analysis of Data from a Phase 3 Randomised Controlled Trial

    Get PDF
    The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine effi cacy using data from a phase 3 trial done between 2009 and 2014. Using data from 8922 African children aged 5 1317 months and 6537 African infants aged 6 1312 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5 1317 months than in those aged 6 1312 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6 1312 weeks and higher immunogenicity in those aged 5 1317 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5 1317 months, the half-life of the shortlived component of the antibody response was 45 days (95% credible interval 42 1348) and that of the long-lived component was 591 days (557 13632). After primary vaccination 12% (11 1313) of the response was estimated to be longlived, rising to 30% (28 1332%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98 13153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of effi cacy against clinical malaria across diff erent age categories and transmission intensities, and effi cacy wanes more rapidly at higher transmission intensity Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 effi cacy, with or without a booster dose, providing a valuable surrogate of eff ectiveness for new RTS,S formulations in the age groups considered

    Evaluation of a learner-designed course for teaching health research skills in Ghana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In developing countries the ability to conduct locally-relevant health research and high quality education are key tools in the fight against poverty. The objective of our study was to evaluate the effectiveness of a novel UK accredited, learner-designed research skills course delivered in a teaching hospital in Ghana.</p> <p>Methods</p> <p>Study participants were 15 mixed speciality health professionals from Komfo Anokye Teaching Hospital, Kumasi, Ghana. Effectiveness measures included process, content and outcome indicators to evaluate changes in learners' confidence and competence in research, and assessment of the impact of the course on changing research-related thinking and behaviour. Results were verified using two independent methods.</p> <p>Results</p> <p>14/15 learners gained research competence assessed against UK Quality Assurance Agency criteria. After the course there was a 36% increase in the groups' positive responses to statements concerning confidence in research-related attitudes, intentions and actions. The greatest improvement (45% increase) was in learners' actions, which focused on strengthening institutional research capacity. 79% of paired before/after responses indicated positive changes in individual learners' research-related attitudes (n = 53), 81% in intention (n = 52) and 85% in action (n = 52). The course had increased learners' confidence to start and manage research, and enhanced life-long skills such as reflective practice and self-confidence. Doing their own research within the work environment, reflecting on personal research experiences and utilising peer support and pooled knowledge were critical elements that promoted learning.</p> <p>Conclusion</p> <p>Learners in Ghana were able to design and undertake a novel course that developed individual and institutional research capacity and met international standards. Learning by doing and a supportive peer community at work were critical elements in promoting learning in this environment where tutors were scarce. Our study provides a model for delivering and evaluating innovative educational interventions in developing countries to assess whether they meet external quality criteria and achieve their objectives.</p

    Safety profile of the RTS,S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa

    Get PDF
    A phase III, double-blind, randomized, controlled trial (NCT00866619) in sub-Saharan Africa showed RTS,S/AS01 vaccine efficacy against malaria. We now present in-depth safety results from this study. 8922 children (enrolled at 5-17\xC2\xA0months) and 6537 infants (enrolled at 6-12\xC2\xA0weeks) were 1:1:1-randomized to receive 4 doses of RTS,S/AS01 (R3R) or non-malaria control vaccine (C3C), or 3 RTS,S/AS01 doses plus control (R3C). Aggregate safety data were reviewed by a multi-functional team. Severe malaria with Blantyre Coma Score \xE2\x89\xA42 (cerebral malaria [CM]) and gender-specific mortality were assessed post-hoc. Serious adverse event (SAE) and fatal SAE incidences throughout the study were 24.2%-28.4% and 1.5%-2.5%, respectively across groups; 0.0%-0.3% of participants reported vaccination-related SAEs. The incidence of febrile convulsions in children was higher during the first 2-3 days post-vaccination with RTS,S/AS01 than with control vaccine, consistent with the time window of post-vaccination febrile reactions in this study (mostly the day after vaccination). A statistically significant numerical imbalance was observed for meningitis cases in children (R3R: 11, R3C: 10, C3C: 1) but not in infants. CM cases were more frequent in RTS,S/AS01-vaccinated children (R3R: 19, R3C: 24, C3C: 10) but not in infants. All-cause mortality was higher in RTS,S/AS01-vaccinated versus control girls (2.4% vs 1.3%, all ages) in our setting with low overall mortality. The observed meningitis and CM signals are considered likely chance findings, that - given their severity - warrant further evaluation in phase IV studies and WHO-led pilot implementation programs to establish the RTS,S/AS01 benefit-risk profile in real-life settings
    corecore