606 research outputs found
The design and commissioning of the MICE upstream time-of-flight system
In the MICE experiment at RAL the upstream time-of-flight detectors are used
for particle identification in the incoming muon beam, for the experiment
trigger and for a precise timing (sigma_t ~ 50 ps) with respect to the
accelerating RF cavities working at 201 MHz. The construction of the upstream
section of the MICE time-of-flight system and the tests done to characterize
its individual components are shown. Detector timing resolutions ~50-60 ps were
achieved. Test beam performance and preliminary results obtained with beam at
RAL are reported.Comment: accepted on Nuclear Instruments and Methods
Exploration of Convolutional Neural Network Architectures for Large Region Map Automation
Deep learning semantic segmentation algorithms have provided improved
frameworks for the automated production of Land-Use and Land-Cover (LULC) maps,
which significantly increases the frequency of map generation as well as
consistency of production quality. In this research, a total of 28 different
model variations were examined to improve the accuracy of LULC maps. The
experiments were carried out using Landsat 5/7 or Landsat 8 satellite images
with the North American Land Change Monitoring System labels. The performance
of various CNNs and extension combinations were assessed, where VGGNet with an
output stride of 4, and modified U-Net architecture provided the best results.
Additional expanded analysis of the generated LULC maps was also provided.
Using a deep neural network, this work achieved 92.4% accuracy for 13 LULC
classes within southern Manitoba representing a 15.8% improvement over
published results for the NALCMS. Based on the large regions of interest,
higher radiometric resolution of Landsat 8 data resulted in better overall
accuracies (88.04%) compare to Landsat 5/7 (80.66%) for 16 LULC classes. This
represents an 11.44% and 4.06% increase in overall accuracy compared to
previously published NALCMS results, including larger land area and higher
number of LULC classes incorporated into the models compared to other published
LULC map automation methods
Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes
The design, construction and testing of neutrino detector prototypes at CERN
are ongoing activities. This document reports on the design of solid state baby
MIND and TASD detector prototypes and outlines requirements for a test beam at
CERN to test these, tentatively planned on the H8 beamline in the North Area,
which is equipped with a large aperture magnet. The current proposal is
submitted to be considered in light of the recently approved projects related
to neutrino activities with the SPS in the North Area in the medium term
2015-2020
Upper limits for a narrow resonance in the reaction p + p -> K^+ + (Lambda p)
The reaction pp -> K^+ + (Lambda p) has been measured at T_p = 1.953 GeV and
\Theta = 0 deg with a high missing mass resolution in order to study the Lambda
p final state interaction. Narrow S = -1 resonances predicted by bag model
calculations are not visible in the missing mass spectrum. Small structures
observed in a previous experiment are not confirmed. Upper limits for the
production cross section of a narrow resonance are deduced for missing masses
between 2058 and 2105 MeV/c^2.Comment: 8 pages, 5 figure
Meson Production in p+d Reactions
The production of neutral and charged pions as well as eta mesons is studied
in the Delta and N* resonance region, respectively. Heavy A=3 recoils were
measured with the GEM detector. The differential cross sections covering the
full angular range are compared with model calculations.Comment: 4 pages, latex, 4 figures, talk presented at the XVIIth European
Conference on Few-Body Problems in Physics, Evora, Portugal, September 2000;
to be published in Nucl. Phys.
A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper
Very intense neutrino beams and large neutrino detectors will be needed in
order to enable the discovery of CP violation in the leptonic sector. We
propose to use the proton linac of the European Spallation Source currently
under construction in Lund, Sweden to deliver, in parallel with the spallation
neutron production, a very intense, cost effective and high performance
neutrino beam. The baseline program for the European Spallation Source linac is
that it will be fully operational at 5 MW average power by 2022, producing 2
GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade
the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron
production and 14 pulses/s for neutrino production. Furthermore, because of the
high current required in the pulsed neutrino horn, the length of the pulses
used for neutrino production needs to be compressed to a few s with the
aid of an accumulator ring. A long baseline experiment using this Super Beam
and a megaton underground Water Cherenkov detector located in existing mines
300-600 km from Lund will make it possible to discover leptonic CP violation at
5 significance level in up to 50% of the leptonic Dirac CP-violating
phase range. This experiment could also determine the neutrino mass hierarchy
at a significance level of more than 3 if this issue will not already
have been settled by other experiments by then. The mass hierarchy performance
could be increased by combining the neutrino beam results with those obtained
from atmospheric neutrinos detected by the same large volume detector. This
detector will also be used to measure the proton lifetime, detect cosmological
neutrinos and neutrinos from supernova explosions. Results on the sensitivity
to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page
Cross section of the reaction close to threshold
We have measured inclusive data on -meson production in collisions
at COSY J\"ulich close to the hyperon production threshold and determined the
hyperon-nucleon invariant mass spectra. The spectra were decomposed into three
parts: , and . The cross section for the
channel was found to be much smaller than a previous measurement in
that excess energy region. The data together with previous results at higher
energies are compatible with a phase space dependence.Comment: accepted by Phys. lett. B some typos correcte
High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)
The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0
deg with a high missing mass resolution in order to study the Lambda p final
state interaction. The large final state enhancement near the Lambda p
threshold can be described using the standard Jost-function approach. The
singlet and triplet scattering lengths and effective ranges are deduced by
fitting simultaneously the Lambda p invariant mass spectrum and the total cross
section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure
Baby MIND: A magnetised spectrometer for the WAGASCI experiment
The WAGASCI experiment being built at the J-PARC neutrino beam line will
measure the difference in cross sections from neutrinos interacting with a
water and scintillator targets, in order to constrain neutrino cross sections,
essential for the T2K neutrino oscillation measurements. A prototype Magnetised
Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN
to act as a magnetic spectrometer behind the main WAGASCI target to be able to
measure the charge and momentum of the outgoing muon from neutrino charged
current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title +
4 pages, LaTeX, 6 figure
- …