74 research outputs found

    Deuterium in marine organic biomarkers: toward a new tool for quantifying aquatic mixotrophy

    Get PDF
    The traditional separation between primary producers (autotrophs) and consumers (heterotrophs) at the base of the marine food web is being increasingly replaced by the paradigm that mixoplankton, planktonic protists with the nutritional ability to use both phago (hetero)trophy and photo(auto)trophy to access energy are widespread globally. Thus, many ‘phytoplankton’ eat, while 50% of ‘protozooplankton’ also perform photosynthesis. Mixotrophy may enhance primary production, biomass transfer to higher trophic levels and the efficiency of the biological pump to sequester atmospheric CO2 into the deep ocean. Although this view is gaining traction, science lacks a tool to quantify the relative contributions of autotrophy and heterotrophy in planktonic protists. This hinders our understanding of their impacts on carbon cycling within marine pelagic ecosystems. It has been shown that the hydrogen (H) isotopic signature of lipids is uniquely sensitive to heterotrophy relative to autotrophy in plants and bacteria. Here, we explored whether it is also sensitive to the trophic status in protists. The new understanding of H isotope signature of lipid biomarkers suggests it offers great potential as a novel tool for quantifying the prevalence of mixotrophy in diverse marine microorganisms and thus for investigating the implications of the ‘mixoplankton’ paradigm

    Predicting Geographic Ranges of Marine Animal Populations Using Stable Isotopes: A Case Study of Great Hammerhead Sharks in Eastern Australia

    Get PDF
    © Copyright © 2020 Raoult, Trueman, Kingsbury, Gillanders, Broadhurst, Williamson, Nagelkerken, Booth, Peddemors, Couturier and Gaston. Determining the geographic range of widely dispersed or migratory marine organisms is notoriously difficult, often requiring considerable costs and typically extensive tagging or exploration programs. While these approaches are accurate and can reveal important information on the species, they are usually conducted on only a small number of individuals and can take years to produce relevant results, so alternative approaches may be preferable. The presence of latitudinal gradients in stable carbon isotope compositions of marine phytoplankton offers a means to quickly determine likely geographic population ranges of species that rely on productivity from these resources. Across sufficiently large spatial and temporal scales, the stable carbon isotopes of large coastal or pelagic marine species should reflect broad geographic patterns of resource use, and could be used to infer geographic ranges of marine populations. Using two methods, one based on a global mechanistic model and the other on targeted low-cost latitudinal sampling of fishes, we demonstrate and compare these stable isotope approaches to determine the core population geography of an apex predator, the great hammerhead (Sphyrna mokarran). Both methods indicated similar geographic ranges and suggested that S. mokarran recorded in south-eastern Australia are likely to be from more northern Australian waters. These approaches could be replicated in other areas where coastlines span predictable geographic gradients in isotope values and be used to determine the core population geography of highly mobile species to inform management decisions

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    Get PDF
    Background: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Base

    Dinosaur peptides suggest mechanisms of protein survival

    Get PDF
    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival

    Intrapopulation Variability Shaping Isotope Discrimination and Turnover: Experimental Evidence in Arctic Foxes

    Get PDF
    Tissue-specific stable isotope signatures can provide insights into the trophic ecology of consumers and their roles in food webs. Two parameters are central for making valid inferences based on stable isotopes, isotopic discrimination (difference in isotopic ratio between consumer and its diet) and turnover time (renewal process of molecules in a given tissue usually measured when half of the tissue composition has changed). We investigated simultaneously the effects of age, sex, and diet types on the variation of discrimination and half-life in nitrogen and carbon stable isotopes (δ15N and δ13C, respectively) in five tissues (blood cells, plasma, muscle, liver, nail, and hair) of a top predator, the arctic fox Vulpes lagopus. We fed 40 farmed foxes (equal numbers of adults and yearlings of both sexes) with diet capturing the range of resources used by their wild counterparts. We found that, for a single species, six tissues, and three diet types, the range of discrimination values can be almost as large as what is known at the scale of the whole mammalian or avian class. Discrimination varied depending on sex, age, tissue, and diet types, ranging from 0.3‰ to 5.3‰ (mean = 2.6‰) for δ15N and from 0.2‰ to 2.9‰ (mean = 0.9‰) for δ13C. We also found an impact of population structure on δ15N half-life in blood cells. Varying across individuals, δ15N half-life in plasma (6 to 10 days) was also shorter than for δ13C (14 to 22 days), though δ15N and δ13C half-lives are usually considered as equal. Overall, our multi-factorial experiment revealed that at least six levels of isotopic variations could co-occur in the same population. Our experimental analysis provides a framework for quantifying multiple sources of variation in isotopic discrimination and half-life that needs to be taken into account when designing and analysing ecological field studies

    Empirical Evaluation of Bone Extraction Protocols

    Get PDF
    The application of high-resolution analytical techniques to characterize ancient bone proteins requires clean, efficient extraction to obtain high quality data. Here, we evaluated many different protocols from the literature on ostrich cortical bone and moa cortical bone to evaluate their yield and relative purity using the identification of antibody-antigen complexes on enzyme-linked immunosorbent assay and gel electrophoresis. Moa bone provided an ancient comparison for the effectiveness of bone extraction protocols tested on ostrich bone. For the immunological part of this study, we focused on collagen I, osteocalcin, and hemoglobin because collagen and osteocalcin are the most abundant proteins in the mineralized extracellular matrix and hemoglobin is common in the vasculature. Most of these procedures demineralize the bone first, and then the remaining organics are chemically extracted. We found that the use of hydrochloric acid, rather than ethylenediaminetetraacetic acid, for demineralization resulted in the cleanest extractions because the acid was easily removed. In contrast, the use of ethylenediaminetetraacetic acid resulted in smearing upon electrophoretic separation, possibly indicating these samples were not as pure. The denaturing agents sodium dodecyl sulfate, urea, and guanidine HCl have been used extensively for the solubilization of proteins in non-biomineralized tissue, but only the latter has been used on bone. We show that all three denaturing agents are effective for extracting bone proteins. One additional method tested uses ammonium bicarbonate as a solubilizing buffer that is more appropriate for post-extraction analyses (e.g., proteomics) by removing the need for desalting. We found that both guanidine HCl and ammonium bicarbonate were effective for extracting many bone proteins, resulting in similar electrophoretic patterns. With the increasing use of proteomics, a new generation of scientists are now interested in the study of proteins from not only extant bone but also from ancient bone

    Ontogenetic trends in resource partitioning and trophic geography of sympatric skates (Rajidae) inferred from stable isotope composition across eye lenses

    No full text
    Resource partitioning is expected in sympatric assemblages of predators as a mechanism that reduces competition between individuals of different species or age classes, which in turn can affect population and community interactions as well as resource distribution and availability. However, for species such as benthic skates (Rajidae), the juveniles of which are cryptic and not easily sampled by traditional survey methods, there is a knowledge gap concerning the spatial and trophic ecology during early life stages. The eye lenses of vertebrates grow over their lifetime providing a chronological biochemical record that can be used to infer differences in diet and/or foraging location (trophic geography) throughout the ontogeny of the animal. For the first time, eye lenses of 4 sympatric Rajidae species from the northeast Atlantic were successfully used to recover stable isotope life histories for individual skates. Isotopic separation among species and across life stages within species suggests that habitat partitioning and differences in trophic ecology are present throughout ontogeny. Isotopic data imply that adults are separated from juveniles both spatially and in terms of their diet and the 4 species appear to partition resources more than expected based on previous studies
    corecore