13 research outputs found
Recommended from our members
Experimental Evolution of Extreme Resistance to Ionizing Radiation in Escherichia coli after 50 Cycles of Selection.
In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent
A variant of the Escherichia coli anaerobic transcription factor FNR exhibiting diminished promoter activation function enhances ionizing radiation resistance.
We have previously generated four replicate populations of ionizing radiation (IR)-resistant Escherichia coli though directed evolution. Sequencing of isolates from these populations revealed that mutations affecting DNA repair (through DNA double-strand break repair and replication restart), ROS amelioration, and cell wall metabolism were prominent. Three mutations involved in DNA repair explained the IR resistance phenotype in one population, and similar DNA repair mutations were prominent in two others. The remaining population, IR-3-20, had no mutations in the key DNA repair proteins, suggesting that it had taken a different evolutionary path to IR resistance. Here, we present evidence that a variant of the anaerobic metabolism transcription factor FNR, unique to and isolated from population IR-3-20, plays a role in IR resistance. The F186I allele of FNR exhibits a diminished ability to activate transcription from FNR-activatable promoters, and furthermore reduces levels of intracellular ROS. The FNR F186I variant is apparently capable of enhancing resistance to IR under chronic irradiation conditions, but does not increase cell survival when exposed to acute irradiation. Our results underline the importance of dose rate on cell survival of IR exposure
TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2.
Antiviral therapeutics are a front-line defense against virally induced diseases. Because viruses frequently mutate to escape direct inhibition of viral proteins, there is interest in targeting the host proteins that the virus must co-opt to complete its replication cycle. However, a detailed understanding of the interactions between the virus and the host cell is necessary in order to facilitate development of host-directed therapeutics. As a first step, we performed a genome-wide loss of function screen using the alphacoronavirus HCoV-229E to better define the interactions between coronaviruses and host factors. We report the identification and validation of an ER-resident host protein, TMEM41B, as an essential host factor for not only HCoV-229E but also genetically distinct coronaviruses including the pandemic betacoronavirus SARS-CoV-2. We show that the protein is required at an early, but post-receptor engagement, stage of the viral lifecycle. Further, mechanistic studies revealed that although the protein was not enriched at replication complexes, it likely contributes to viral replication complex formation via mobilization of cholesterol and other lipids to facilitate host membrane expansion and curvature. Continued study of TMEM41B and the development of approaches to prevent its function may lead to broad spectrum anti-coronavirus therapeutics
Recommended from our members
Physiology of Highly Radioresistant Escherichia coli After Experimental Evolution for 100 Cycles of Selection.
Ionizing radiation (IR) is lethal to most organisms at high doses, damaging every cellular macromolecule via induction of reactive oxygen species (ROS). Utilizing experimental evolution and continuing previous work, we have generated the most IR-resistant Escherichia coli populations developed to date. After 100 cycles of selection, the dose required to kill 99% the four replicate populations (IR9-100, IR10-100, IR11-100, and IR12-100) has increased from 750 Gy to approximately 3,000 Gy. Fitness trade-offs, specialization, and clonal interference are evident. Long-lived competing sub-populations are present in three of the four lineages. In IR9, one lineage accumulates the heme precursor, porphyrin, leading to generation of yellow-brown colonies. Major genomic alterations are present. IR9 and IR10 exhibit major deletions and/or duplications proximal to the chromosome replication terminus. Contributions to IR resistance have expanded beyond the alterations in DNA repair systems documented previously. Variants of proteins involved in ATP synthesis (AtpA), iron-sulfur cluster biogenesis (SufD) and cadaverine synthesis (CadA) each contribute to IR resistance in IR9-100. Major genomic and physiological changes are emerging. An isolate from IR10 exhibits protein protection from ROS similar to the extremely radiation resistant bacterium Deinococcus radiodurans, without evident changes in cellular metal homeostasis. Selection is continuing with no limit to IR resistance in evidence as our E. coli populations approach levels of IR resistance typical of D. radiodurans
Recommended from our members
Corrigendum: Physiology of Highly Radioresistant Escherichia coli After Experimental Evolution for 100 Cycles of Selection.
[This corrects the article DOI: 10.3389/fmicb.2020.582590.]
Recommended from our members
Corrigendum: Physiology of Highly Radioresistant Escherichia coli After Experimental Evolution for 100 Cycles of Selection.
[This corrects the article DOI: 10.3389/fmicb.2020.582590.]
Differences between familial and sporadic dilated cardiomyopathy: ESC EORP Cardiomyopathy & Myocarditis registry
Aims: Dilated cardiomyopathy (DCM) is a complex disease where genetics interplay with extrinsic factors. This study aims to compare the phenotype, management, and outcome of familial DCM (FDCM) and non-familial (sporadic) DCM (SDCM) across Europe. Methods and results: Patients with DCM that were enrolled in the prospective ESC EORP Cardiomyopathy & Myocarditis Registry were included. Baseline characteristics, genetic testing, genetic yield, and outcome were analysed comparing FDCM and SDCM; 1260 adult patients were studied (238 FDCM, 707 SDCM, and 315 not disclosed). Patients with FDCM were younger (P\ua0<\ua00.01), had less severe disease phenotype at presentation (P\ua0<\ua00.02), more favourable baseline cardiovascular risk profiles (P\ua0 64\ua00.007), and less medication use (P\ua0 64\ua00.042). Outcome at 1\ua0year was similar and predicted by NYHA class (HR 0.45; 95% CI [0.25\u20130.81]) and LVEF per % decrease (HR 1.05; 95% CI [1.02\u20131.08]. Throughout Europe, patients with FDCM received more genetic testing (47% vs. 8%, P\ua0<\ua00.01) and had higher genetic yield (55% vs. 22%, P\ua0<\ua00.01). Conclusions: We observed that FDCM and SDCM have significant differences at baseline but similar short-term prognosis. Whether modification of associated cardiovascular risk factors provide opportunities for treatment remains to be investigated. Our results also show a prevalent role of genetics in FDCM and a non-marginal yield in SDCM although genetic testing is largely neglected in SDCM. Limited genetic testing and heterogeneity in panels provides a scaffold for improvement of guideline adherence
Recommended from our members
Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication
Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases