1,557 research outputs found

    Modification of surface energy in nuclear multifragmentation

    Get PDF
    Within the statistical multifragmentation model we study modifications of the surface and symmetry energy of primary fragments in the freeze-out volume. The ALADIN experimental data on multifragmentation obtained in reactions induced by high-energy projectiles with different neutron richness are analyzed. We have extracted the isospin dependence of the surface energy coefficient at different degrees of fragmentation. We conclude that the surface energy of hot fragments produced in multifragmentation reactions differs from the values extracted for isolated nuclei at low excitation. At high fragment multiplicity, it becomes nearly independent of the neutron content of the fragments.Comment: 11 pages with 13 figure

    Control of the woolly apple aphid (Erisoma lanigerum Hausm.) by releasing earwigs (Forficula auricularia L.) and support oil applications - an interim report of first year results

    Get PDF
    The woolly apple aphid (Erisoma lanigerum Hausm.) has been recognised for some years as a serious pest in organic fruit growing where they may cause severe economic damage due to a lack of control strategies. Based on preliminary results a new project has been started in 2007 testing combinations of releasing earwigs and oil applications in order to develop an onfarm control strategy. In this paper we present preliminary results of the first year of the project´s field trials. They showed good efficacies for applying oil preparations by brush. The efficacy of releasing earwigs depended on the infestation intensity

    State-Dependent Optical Lattices for the Strontium Optical Qubit

    No full text
    We demonstrate state-dependent optical lattices for the Sr optical qubit at the tune-out wavelength for its ground state. We tightly trap excited state atoms while suppressing the effect of the lattice on ground state atoms by more than four orders of magnitude. This highly independent control over the qubit states removes inelastic excited state collisions as the main obstacle for quantum simulation and computation schemes based on the Sr optical qubit. Our results also reveal large discrepancies in the atomic data used to calibrate the largest systematic effect of Sr optical lattice clocks.Comment: 6 pages, 4 figures + 6 pages supplemental materia

    Interference-contrast optical activity: a new technique for probing the chirality of anisotropic samples and more

    Get PDF
    We introduce interference-contrast optical activity (ICOA) as a new technique for probing the chirality of anisotropic samples and more. ICOA could underpin a new class of ‘chiral microscopes’, with potential applications spanning the range of chirality and beyond. Two possible versions of ICOA are described explicitly; one designed to probe the optical rotation of a transparent sample regardless of the sample’s linear birefringence (ICOA-OR) and another designed to probe gradients in the optical rotation of a transparent sample (ICOA-GOR). Simulated results for α-quartz lead us to suggest that ICOA-GOR might be applied to help monitor the growth of chiral crystals in the pharmaceutical industry. Possible directions for future research are highlighted

    Raman measurements of heavy ion irradiated water-bearing minerals

    Get PDF

    V2:Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    Full text link
    The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.Comment: 23 pages, 8 figure

    The importance of vegetation in understanding terrestrial water storage variations

    Get PDF
    Funding Information: The article processing charges for this openaccess publication were covered by the Max Planck Society. Publisher Copyright: © 2022 Tina Trautmann et al.So far, various studies have aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way that vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon, and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth-observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake, and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including varying vegetation characteristics on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment in which vegetation parameters vary in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but explicitly including varying vegetation data leads to even better performance and more physically plausible parameter values. The largest improvements regarding TWS and ET are seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of different soil water storage components to the TWS variations. This suggests an important role of the representation of vegetation in hydrological models for interpreting TWS variations. Our simulations further indicate a major effect of deeper moisture storages and groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.publishersversionpublishe
    corecore