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We introduce interference-contrast optical activity (ICOA) as
a new technique for probing the chirality of anisotropic
samples and more. ICOA could underpin a new class of ‘chiral
microscopes’, with potential applications spanning the range of
chirality and beyond. Two possible versions of ICOA are
described explicitly; one designed to probe the optical rotation
of a transparent sample regardless of the sample’s linear
birefringence (ICOA-OR) and another designed to probe
gradients in the optical rotation of a transparent sample (ICOA-
GOR). Simulated results for α-quartz lead us to suggest that
ICOA-GOR might be applied to help monitor the growth of
chiral crystals in the pharmaceutical industry. Possible
directions for future research are highlighted.
1. Introduction
Optical rotation, circular dichroism and other manifestations of
optical activity are measured routinely for isotropic samples,
serving as hallmarks of chirality in applications ranging from the
determination of sugar concentrations to the investigation of virus
structures [1–4]. By contrast, measurements of optical activity are
seldom reported for anisotropic samples, the main reason being
that anisotropic samples usually exhibit linear birefringence, linear
dichroism and other effects that convolve with and partially
suppress optical activity [5–9]. According to one source: ‘Measuring
[optical rotation] and [circular dichroism] in crystals of arbitrary
symmetry has for two centuries been likened to the search for a
needle in a haystack. For this reason, we know virtually nothing
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from experiment about the orientational dependence of chiroptics of molecules, an enormous hole in the

science of molecular chirality.’ [9].
In this paper, we introduce interference-contrast optical activity (ICOA) as a new technique for probing

the chirality of anisotropic samples andmore. ICOA could underpin a new class of ‘chiral microscopes’, with
potential applications spanning the range of chirality and beyond; chirality is sufficient but not always
necessary for the presence of optical activity, which is exhibited naturally by certain achiral anisotropic
samples and can also be induced in a sample by certain influences such as a static magnetic field
[2,6,8,10–12]. In what follows, we describe two possible versions of ICOA explicitly; one designed to
probe the optical rotation of a transparent sample regardless of the sample’s linear birefringence (ICOA-
OR) and another designed to probe gradients in the optical rotation of a transparent sample (ICOA-GOR).
ICOA-OR and ICOA-GOR are distinct from all polarimetric techniques known to the authors at the time
of writing, including HAUP-based techniques [7,10,11,13,14], existing polarization interferometry
techniques [15], optical heterodyne polarimetry [16,17], Metripol-based techniques [7,18], CRDP and other
such cavity-based techniques [19–21] and Mueller matrix polarimetry [9,22]. ICOA-GOR, in particular,
has elements in common with, but is subtly distinct from, DIC-based techniques [23–29]. ICOA is
complementary to chiral rotational spectroscopy; a technique proposed recently by one of the authors for
determining orientated chiroptical information about individual molecules [30].

In what follows, we consider ourselves to be in an inertial frame of reference described by right-
handed Cartesian coordinates x, y and z with associated unit vectors x̂, ŷ and ẑ. Rotations are dictated
by the left-hand rule, with optical rotations taken about the direction of propagation of the light.
We work in the domain of classical optics using the Jones vector formalism [2,22,31,32], with the
upper components of our Jones vectors corresponding to the x component of the electric field and
the lower components corresponding to the y component.
2. ICOA-OR
In this section, we describe ICOA-OR; a version of ICOA designed to probe the optical rotation of a
transparent sample regardless of the sample’s linear birefringence. For the sake of concreteness,
we consider the basic set-up depicted schematically in figure 1, modelled as described below. Other
set-ups capable of achieving the same results are conceivable.

A light source L produces an initial (optical) field in the form of weak, planar, monochromatic light of
angular frequency ω and diagonal polarization (D). The initial field first propagates through a variable
wave plate VW with axes aligned vertically and horizontally, rendering it elliptically polarized (E) in
general. A polarizing beam splitter BS1 together with a polarization-independent mirror M1 then divides
the initial field into a vertically polarized (V) sampling field and a horizontally polarized (H) reference
field, with transverse separation described by the shear vector s ¼ sxx̂þ syŷ. The sampling and reference
fields first propagate through polarization rotators PR1 and PR2 set to rotate through an angle σ,
resulting in the Jones vectors

~J
(s)
s ¼ 1ffiffiffi

2
p

h
coss, �sins

iT
(2:1)

and

~J
(s)
r ¼ 1ffiffiffi

2
p

h
sins, coss

iT
: (2:2)

They then propagate through a sample zone, where a thin, transparent sample S is located in the path of the
sampling field. The sample is refractive-indexmatchedwith the surroundingmedium, taken to be an achiral,
transparent fluidwith refractive index n. After the sample zone the Jones vector of the sampling field is ~M~J

(s)
s ,

where ~M is a Jones matrix embodying the optical properties of the sample;

~M ¼ eiaDz
cos (tDz)þ idDz sinc(tDz) (ibþ g)Dz sinc(tDz)

(ib� g)Dz sinc(tDz) cos (tDz)� idDz sinc(tDz)

� �
(2:3)

with

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ g2 þ d2

q
, (2:4)

where α = α(x, y) accounts for themean refractive index of the sample (relative to n), β = β(x, y) accounts for the
diagonal-antidiagonal linear birefringence of the sample, γ = γ(x, y) accounts for the circular birefringence of
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Figure 1. A basic set-up for ICOA-OR, depicted schematically (with a shear vector of the form s¼jsĵy).
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the sample, δ = δ(x, y) accounts for the vertical-horizontal linear birefringence of the sample andΔz = Δz(x, y) is
the geometrical thickness of the sample [2,22,31,32]. The sampling and reference fields are recombined by a
polarization-independent mirror M2 together with a polarization-independent 50 : 50 beam splitter BS2,
producing a final field with Jones vector

~J
(s,c)
f ¼ 1ffiffiffi

2
p

h
~M~J

(s)
s þ eic~J

(s)
r

i
, (2:5)

where c is a relative phase, tunable via VW. A detector D records the intensity

I(s,c)OR ¼ ~J
(s,c)y
f

~J
(s,c)
f , (2:6)
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of the final field, normalized here to give values in the range [0, 1]. Let us suppose now that PR1 and

PR2 are modulated between their σ = 0 and σ = 90° settings such that the (average) intensity of the final
field becomes

�I(c)OR ¼ 1
2

h
I(0,c)OR þ I(90

� ,c)
OR

i
¼ 1

2

h
1þ �C(c)

OR

i
(2:7)

with

�C(c)
OR ¼ �cos (aDz� c)Du sinc(tDz), (2:8)

where Δθ = γΔz is the (bare) optical rotation of S. Equation (2.8) is the (average) contrast due to interference of
the sampling and reference fields in the final field. According to equation (2.8), the contrast can be non-zero
(�C(c)

OR=0) if and only if the optical rotation is non-zero (Δθ≠ 0), regardless of the linear birefringence (β and δ)
of S.

If the sample S is sufficiently thin and well matched with the surrounding medium that jajDz & 1
and tDz&1, equation (2.8) reduces to

�C(p)
OR � Du, (2:9)

for a choice of relative phase equivalent to c = π. According to equations (2.7) and (2.9), the intensity �I(p)OR

embodies an image of the optical rotation Δθ, with regions of positive optical rotation (Δθ > 0) appearing
brightened (�C(p)

OR.0) and regions of negative optical rotation (Δθ < 0) appearing darkened (�C(p)
OR,0),

regardless of the linear birefringence (β and δ) of S. If S is not sufficiently thin and well matched with
the surrounding medium to satisfy jajDz&1 but is nevertheless sufficiently flat that jD(aDz)j&1, the
desired image can be obtained for a choice of relative phase equivalent to c = (αΔz + π)mod(2π)
(assuming that tDz&1). If neither jajDz&1 nor jD(aDz)j&1 is satisfied, appropriate compensations
might be made by deforming the phase fronts of the sampling and/or reference fields using adaptive
optics [33,34].

The physical origin of equation (2.9) can be understood simply as follows, where we assume that |α|
Δz≪ 1 and τΔz≪ 1. For a given setting of the polarization rotators PR1 and PR2 (σ = 0 or σ = 90°), non-
zero optical rotation (Δθ≠ 0) yields an electric-field component in the sampling field aligned with the
electric field of the reference field and the two interfere in the final field, either constructively
(�C(p)

OR.0) or destructively (�C(p)
OR,0) depending on the sign of the optical rotation (Δθ > 0 or Δθ < 0).

Non-zero diagonal-antidiagonal linear birefringence (β≠ 0) also yields an electric-field component in
the sampling field aligned with the electric field of the reference field; however, the two do not
(strongly) interfere in the final field as they differ in phase by (approximately) a quarter cycle.
Modulating PR1 and PR2 between their σ = 0 and σ = 90° settings provides an extra layer of
immunity to non-zero linear birefringence (in particular, β≠ 0) as it is physically equivalent to rotating
the sample S back and forth by a quarter turn about the direction of propagation of the light,
effectively modulating the signs of the linear birefringence parameters β and δ. Certain undesirable
terms vanish accordingly, in turn relaxing requirements on the mean refractive index parameter α and
the geometrical thickness Δz.
3. ICOA-GOR
In this section, we describe ICOA-GOR; a version of ICOA designed to probe gradients in the optical
rotation of a transparent sample. For the sake of concreteness, we consider the basic set-up depicted
schematically in figure 2, modelled as described below. This set-up was inspired by the lens-free
microscope described in [29]. Other set-ups capable of achieving the same results are conceivable.

The set-up is similar to that considered in §2 for ICOA-OR but differs in the following key respects.
The initial field is divided into sampling and reference fields with a small angular separation ζ using a
Sénarmont prism SP. The sampling and reference fields propagate through a single polarization rotator
PR set to rotate through an angle σ, resulting in the Jones vectors

~J
(s)
s ¼ 1ffiffiffi

2
p

h
coss, �sins

iT
(3:1)
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Figure 2. A basic set-up for ICOA-GOR, depicted schematically (with a shear vector of the form s ¼ jsĵy).
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and

~J
(s)
r ¼ e�ivnzy=c 1ffiffiffi

2
p

h
sins, coss

iT
: (3:2)

The sampling and reference fields both propagate through the sample S, producing a final field with
Jones vector

~J
(s,c)
f (z ¼ zD) ¼ ~M~J

(s)
s þ eic ~Ms~J

(s)
r , (3:3)

at the position z ¼ zD of the detector D, where the relative phase c is tunable by translating SP and a
subscript s indicates that a quantity is evaluated at x + sx and y + sy rather than x and y, thus
pertaining to the reference field rather than the sampling field. The intensity of the final field follows as:

I(s,c)GOR(z ¼ zD) ¼ 1
2
~J
(s,c)y
f (z ¼ zD)~J

(s,c)
f (z ¼ zD), (3:4)

normalized here to give values in the range [0, 1]. Let us suppose now that PR is modulated between its
σ = 0 and σ = 90° settings such that the intensity of the final field becomes

�I(c)GOR ¼ 1
2

h
I(0,c)GOR(z ¼ zD)þ I(90

� ,c)
GOR (z ¼ zD)

i
¼ 1

2

h
1þ �C(c)

GOR

i
(3:5)
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with

�C(c)
GOR ¼ cos (asDzs � aDzþ c)

h
Dus cos (tDz) sinc(tsDzs)� Du cos (tsDzs) sinc(tDz)

þ (bsd� bds)DzsDz sinc(tsDzs) sinc(tDz)
i
, (3:6)

where we have assumed that attention is restricted to a small area and taken e−iωnζy/c→ 1 accordingly.
Equations (3.5) and (3.6) reduce to equations (2.7) and (2.8) for Δzs = αs = βs = γs = δs = 0, as they should.

If the sample S is sufficiently thin and well matched with the surrounding medium that
jasDzs�aDzj&1, tsDzs&1 and tDz&1, equation (3.6) reduces to

�C(0)
GOR � Dus � Duþ (bsd� bds)DzsDz, (3:7)

for a choice of relative phase equivalent to c = 0. The final term on the right-hand side of equation (3.7)
vanishes for many samples of interest (including all of the samples considered in §4), in which case
equation (3.7) reduces further still to

�C(0)
GOR � Dus � Du

� s � rrrrr(Du), (3:8)

where we have assumed that the shear distance |s| is small relative to the length scale over which
variations in the optical rotation Δθ occur. According to equations (3.5) and (3.8), the intensity �I(0)GOR

embodies an image of the gradient s � rrrrr(Du) of Δθ along the shear vector s, with regions of positive
gradient (s � rrrrr(Du).0) appearing brightened (�C(0)

GOR.0) and regions of negative gradient
(s � rrrrr(Du),0) appearing darkened (�C(0)

GOR,0). Under the same conditions, equation (3.6) reduces to

�C(�p=2)
GOR � (asDzs � aDz)(Dus � Du), (3:9)

for a choice of relative phase equivalent to c =−π/2. If the intrinsic optical properties of the sample are
homogeneous (αs = α and γs = γ), equation (3.9) is

�C(�p=2)
GOR � ag(Dzs � Dz)2: (3:10)

According to equations (3.5) and (3.10), enantiomorphic samples (for which γ = ±|γ|) appear with opposite

contrasts (�C(�p=2)
GOR ¼ +sgnaj�C(�p=2)

GOR j). If jasDzs � aDzj&1 is not satisfied, appropriate compensations might
bemade by deforming the phase fronts of the sampling and/or reference fields using adaptive optics [33,34].

Interestingly, the initial optical field here (which sports one-dimensional helicity fringes) is essentially
the same as the optical field proposed by one of the authors for exerting discriminatory optical forces on
chiral molecules [35]; a phenomenon recently demonstrated in the laboratory for chiral liquid crystal
microspheres [36]. It is also essentially the same as the optical field employed in the new technique of
snapshot circular dichroism, which might enable faster measurements of circular dichroism than is
possible using traditional circular dichroism spectrometers [37].
4. Simulated results
In this section,we present simulated results for ICOA-ORand ICOA-GORand compare themwith simulated
results for other techniques, the latter having been produced according to the theories presented in appendix
A.We focus on α-quartz, which is uniaxial and chiral; it can adopt either a left-handed (L) or a right-handed
(R) crystal structure, which are distinct mirror-image versions of each other. According to one source:
‘α-quartz… is the only optically active and birefringent crystal that has been fully investigated
[experimentally]’ [8]. Quartz is the second most abundant mineral in the Earth’s continental crust [38].
Many gemstones are varieties of quartz [39]. Quartz took centre stage in several seminal studies of optical
activity and chirality, including the very discovery of optical activity and the recognition that
enantiomorphic forms are associated with opposite signs of optical rotation [2,5,7,12]. Today, it finds use
in a variety of applications, ranging from wave plates to digital clocks.

4.1. Optical properties of α-quartz
In this subsection, we summarize the relevant optical properties of α-quartz. We consider light of angular
frequency ω = 3.7 Prad s−1 (green) propagating in the z-direction through α-quartz with its optic axis
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oriented with azimuthal angle w and polar angle q in spherical coordinates, taking the α-quartz to be
immersed in tetralin (n = 1.541) for the purpose of refractive index matching [40].

The intrinsic optical properties α and γ are independent of the azimuthal angle wwhereas the intrinsic
optical properties β and δ can be expressed in the form [31]

b ¼ j sin (2w) (4:1)

and

d ¼ j cos (2w), (4:2)

where j ¼ j(q) contains all dependence on the polar angle q.
Shown in figure 3 are the intrinsic optical properties α, ξ and γ as a function of the polar angle q for

both L structure and R structure, calculated according to the theory and experimental data described in
[6,8,31].

— The mean refractive index parameter α is the same for L structure and R structure. It is positive for all
values of q (given our choice of tetralin as a surrounding medium), having its lowest value for light
propagating along the optic axis (q ¼ 0 or q ¼ 180�) and its largest value for light propagating
perpendicular to the optic axis (q ¼ 90�).
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— The linear birefringence parameter ξ is also the same for L structure and R structure. It is zero or

positive for all values of q, vanishing for light propagating along the optic axis (q ¼ 0 or q ¼ 180�)
and having its largest value for light propagating perpendicular to the optic axis (q ¼ 90�).

— The circular birefringence parameter γ and thus the optical rotation Δθ(=γΔz) of a sample has opposite
signs for L structure and R structure, thus serving as a signature of chirality. ForL structure, say, it is
strongly negative if 0 � q,q0 or 180� � q0,q � 180�, vanishing if q ¼ q0 or q ¼ 180�q0 and
weakly positive if q0,q,180� � q0, where q0 � 56�.

Let us emphasize here that the absolute sign of γ and thus Δθ depends on both the chirality and
orientation of a sample. For 56�&q &124� (the shaded regions in figure 3), Δθ has the opposite sign
relative to the case where light propagates along the optic axis (q ¼ 0 or q ¼ 180�); we say that the
sample appears ‘chiroptically inverted’. These dependences can be traced to the familiar optical
rotation tensor gAB (gXX = gYY = ±5.82 × 10−5 and gZZ¼+1:296� 10�4, where the upper signs
correspond to L structure and the lower signs correspond to R structure); we take

g ¼ v

2c

h
n(G)e � n(G)o

i
sin tan�1 Gh

n(0)e � n(0)o

i ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(0)e n(0)o

p
8<
:

9=
;

0
@

1
A, (4:3)

with

n(G)e ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(0)2e þ n(0)2o þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
n(0)2e � n(0)2o

i2
þ 4G2

rs
(4:4)

and

n(G)o ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(0)2e þ n(0)2o �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
n(0)2e � n(0)2o

i2
þ 4G2

rs
(4:5)

using

G ¼ gXX sin2 qþ gZZ cos2 q (4:6)

n(0)e ¼ nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e cos2 qþ n2o sin

2 q
q (4:7)

and n(0)o ¼ no, (4:8)

where n(G)e is the extraordinary refractive index and n(G)o is the ordinary refractive index.

4.2. Brazil twinning
In this subsection, we consider the phenomenon of Brazil twinning. According to one source: ‘A Brazil
twin in quartz consists of a left-handed region and a right-handed region in contact.’ [41].

4.2.1. Samples I, II and II (tilted)

Depicted in figure 4 are three illustrative samples, each consisting of a basal slice of α-quartz in which
Brazil twinning occurs.1 The slices are immersed in tetralin for the purpose of refractive index
matching and are optically flat (|Δ(αΔz)|≪ 1 across the slices). Sample I has a single planar Brazil-
twin boundary and is oriented with its optic axis parallel to the direction of propagation of the light;
see panel (a) Sample II has two intersecting planar Brazil-twin boundaries and is also oriented with
its optic axis parallel to the direction of propagation of the light; see panel (b). Sample II (tilted) is
obtained from sample II by rotating the slice first through 15° about the x-axis then through 15° about
the z axis; see panel (c).
1To obtain the Jones matrix ~M of a slice we decomposed the slice into segments of uniform structure (L or R) and multiplied the Jones
matrices of each of these segments together in the appropriate order. Interestingly, sample II (tilted) has (small) ‘anomalous’
contributions to the circular birefringence parameter γ along its twin boundaries, these being mathematically attributable to the fact
that the Jones matrices of adjacent segments do not commute [31].
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4.2.2. Appearance using ‘crossed’ polarizers

Shown in figure 5 are simulated images of sample I, sample II and sample II (tilted) as they would appear
using ‘crossed’ polarizers, according to equation (A 4).

In panels (a) and (b), regions of L structure appear darkened and regions of R structure appear
brightened, with contrasts of equal magnitude; for the special case of observation along the optic axis,
α-quartz exhibits zero linear birefringence and the relationship between optical rotation and the
contrast obtained using ‘crossed’ polarizers is simple. The contrast is unchanged if sample I or sample
II is rotated about the direction of propagation of the light.

In panel (c), however, regions of L structure and regions of R structure both appear brightened, with
contrasts of unequal magnitude; for observation oblique to the optic axis, α-quartz exhibits non-zero
linear birefringence and the relationship between optical rotation and the contrast obtained using
‘crossed’ polarizers is complicated in general. The contrast changes if sample II (tilted) is rotated
about the direction of propagation of the light.
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Note that ‘crossed’ polarizers can yield non-zero contrast for a transparent sample exhibiting non-
zero linear birefringence even if the optical rotation of the sample is zero; they are not particularly
well suited to the study of optical rotation.
4.2.3. Appearance using ICOA-OR

Shown in figure 6 are simulated images of sample I, sample II and sample II (tilted) as they would appear
using ICOA-OR, according to equations (2.7) and (2.8).

In panels (a), (b) and (c), regions of L structure appear darkened and regions of R structure
appear brightened, with contrasts of equal magnitude; for observation of α-quartz along the optic
axis or oblique to the optic axis, the relationship between optical rotation and the contrast obtained
using ICOA-OR is simple (assuming that jajDz&1 or jD(aDz)j&1 and tDz&1). The contrast is
unchanged if sample I, sample II or sample II (tilted) is rotated about the direction of propagation
of the light.
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Let us emphasize here that ICOA-OR can yield a non-zero contrast for a transparent sample if and
only if the optical rotation of the sample is non-zero, regardless of the linear birefringence of the
sample; it enables the detection of optical rotation without ambiguity.
4.3. Microscopic crystals and enantiomorphic identification
In this subsection, we consider microscopic crystals and the task of enantiomorphic identification; given a
sample of such crystals, we seek to identify which have L structure and which have R structure, thus
enabling the determination of the enantiomorphic excess

EE ¼ NR �NL

NR þNL
(4:9)

of the sample, where NL is the number of crystals with L structure and NR is the number with
R structure.
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4.3.1. Samples III, IV and V

Depicted in figure 7 are three illustrative samples, each consisting of twenty-five microscopic hemihedral
α-quartz crystals with randomly chosen orientations. The crystals are immersed in tetralin for the purpose
of refractive index matching and are optically thin (jasDzs � aDzj&1 everywhere). Sample III is
enantiopure, being composed solely of crystals with L structure (EE=−1); see panel (a). Sample IV is
also enantiopure, being composed solely of crystals with R structure (EE= 1); see panel (b). Sample V
is scalemic, being composed of a mixture of crystals with L structure and crystals with R structure
(EE≠ ±1); see panel (c).

4.3.2. Appearance using standard DIC

Shown in figure 8 are simulated images of sample III, sample IV and sample V as they would appear
using standard DIC, according to equation (A 7).
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In panels (a), (b) and (c), each crystal appears with its left-hand side darkened and its right-hand side
brightened, regardless of whether the crystal has L or R structure; see crystals 1–75.

Standard DIC is chirally insensitive at leading order; it is not particularly well suited to the study of
optical rotation.
4.3.3. Appearance using ICOA-GOR

Shown in figure 9 are simulated images of sample III, sample IV and sample V as they would appear
using ICOA-GOR with a choice of relative phase equivalent to either c = 0 or c =−π/2, according to
equations (3.5) and (3.6). For each crystal, the sign of the optical rotation Δθ can be seen immediately.
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Together with knowledge about the orientation of the crystal (in particular, whether the crystal appears
‘chiroptically inverted’ or not), this can be used to determine the structure (L or R) of the crystal.

Panel (a) illustrates three distinct possibilities for a crystal withL structure. If the optic axis of the crystal
makes an angle of less than ≈56° with the direction of propagation of the light, the crystal appears with its
left-hand side strongly brightened and its right-hand side strongly darkened for c = 0 or simply with both
sides strongly darkened for c =−π/2 (the optical rotation is strongly negative); see crystals 2, 4, 6–8, 10,
11, 15, 17, 19–23 and 25. If the optic axis makes an angle of around ≈56°, the crystal is essentially invisible
(the optical rotation is essentially zero); see crystals 3 and 13. If the optic axis makes angles greater than ≈
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56°, the crystal appearswith its right-hand sideweakly brightened and its left-handweakly darkened forc =

0 or simply with both sides weakly brightened for c =−π/2 (the optical rotation is weakly positive, as the
crystal appears ‘chiroptically inverted’); see crystals 1, 5, 9, 12, 14, 16, 18 and 24.

Panel (b) illustrates three complementary possibilities for a crystal withR structure. If the optic axis of the
crystalmakes an angle of less than≈56°with the direction of propagation of the light, the crystal appearswith
its right-hand side strongly brightened and its left-hand side strongly darkened for c = 0 or simplywith both
sides strongly brightened for c =−π/2 (the optical rotation is strongly positive); see crystals 27, 31–34, 38–41,
43–45 and 49. If the optic axis makes an angle of around ≈56°, the crystal is essentially invisible (the optical
rotation is essentially zero); see crystal 35. If the optic axismakes angles greater than≈56°, the crystal appears
with its left-hand side weakly brightened and its right-hand weakly darkened for ψ = 0 or simply with both
sides weakly darkened for c =−π/2 (the optical rotation is weakly negative, as the crystal appears
‘chiroptically inverted’); see crystals 26, 28–30, 37, 42, 46–48 and 50.

The reader is invited to try their hand at the task of enantiomorphic identification and thus the
determination of the enantiomorphic excess EE of sample V using panel (c) together with panels
(a) and (b) for guidance.2 The optic axes of crystals 51, 53, 54, 56–60, 64–67, 69–73 and 75 each make
an angle of less than ≈56° with the direction of propagation of the light, and those of crystals 52, 55,
61–63, 68 and 74 each make angles of more than ≈56°; the latter crystals appear ‘chiroptically inverted’.

It has recently been shown that PlasDIC can be applied to help monitor crystal growth, with potential
applications in the pharmaceutical industry [26,28]. The results presented above lead us to suggest that
ICOA-GOR might be applied to provide chiral sensitivity in this context, an important addition given the
importance of chirality to the pharmaceutical industry [42]. We envisage using ICOA-GOR to determine
the sign of the optical rotation of a crystal in conjunction with a computer algorithm trained with
knowledge of the crystal’s habit to determine the crystal’s orientation; together, this information will
reveal the chirality of the crystal.

5. Outlook
Let us conclude by highlighting some possible directions for future research.

— The Jones vector formalism neglects numerous effects; diffraction, depolarization and more
[2,22,31,32]. It is desirable to develop a more accurate theoretical description of ICOA.

—Closely related is the task of modelling imperfections in real ‘chiral microscopes’ based on ICOA.
— It remains for us to elucidate the use of ICOA for probing manifestations of optical activity other than

optical rotation; the circular dichroism of absorbing samples, for example, as well as versions of ICOA
based on reflection rather than transmission.

— There are a wealth of potential applications to be explored for ICOA and associated ‘chiral microscopes’.

We will return to these and related tasks elsewhere.
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Appendix A. Other techniques
In this appendix, we present theories describing the use of ‘crossed’ polarizers and standard DIC.
A.1. ‘Crossed’ polarizers
In this subsection, we consider the use of ‘crossed’ polarizers. For the sake of concreteness, we consider a
basic set-up similar to that described in §2 for ICOA-OR but with the polarization rotators PR1 and PR2
2Crystals 53, 55–57, 64, 67, 68, 70, 71 and 74 have L structure and crystals 51, 52, 54, 58–63, 65, 66, 69, 72, 73, and 75 have R structure;
the enantiomorphic excess of sample V is EE = (15− 10)/(15 + 10) = 1/5.
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switched off (σ = 0), the reference field blocked (~J

(0)
r ! 0) and beam splitter BS2 replaced by an analyser,

the latter being described by the Jones matrix

A(m) ¼ cos2 m �sinm cosm
�sinm cosm sin2 m

� �
, (A 1)

where μ is dictated by the orientation of the analyser. The Jones vector of the final field is thus

~J
(m)
f ¼ A(m) ~M~J

(0)
s , (A 2)

and the intensity of the final field follows as:

I(m)CP ¼ 2~J
(m)y
f

~J
(m)
f

¼ cos2 m cos2 (tDz)þ
h
cos2 md2Dz2 þ sin2 m(b2Dz2 þ Du2)

i
sinc2(tDz)

þ sin (2m)
h
Du cos (tDz)� bDzdDz sinc(tDz)

i
sinc(tDz), (A 3)

normalized here to give values in the range [0, 1]. Equation (A 3) reduces to

I(+45�)
CP ¼ 1

2
+

h
Du cos (tDz)� bDzdDz sinc(tDz)

i
sinc(tDz) (A 4)

for a choice of analyser orientation equivalent to μ = ±45°.

A.2. Standard DIC
In this subsection, we consider standard DIC. For the sake of concreteness we consider a basic
set-up similar to that described in §3 for ICOA-GOR but with the polarization rotator PR
switched off (σ = 0) and an analyser placed before the detector D, the analyser being described by the
Jones matrix

A(+45�) ¼ 1
2

1 +1
+1 1

� �
, (A 5)

as follows from equation (A 1) for a choice of analyser orientation equivalent to μ = ±45°. The Jones vector
of the final field at the position z ¼ zD of D is thus

~J
(+45� ,c)
f (z ¼ zD) ¼ A(+45�)

h
~M~J

(0)
s þ eic ~Ms~J

(0)
r

i
, (A 6)

and the intensity of the final field follows as:

I(+45�,c)
DIC ¼ 1

2
~J
(+45�,c)y
f (z ¼ zD)~J

(+45�,c)
f (z ¼ zD)

¼ 1
8

h
cos2 (tsDzs)+ 2Dus cos (tsDzs) sinc(tsDzs)

þ (bsDzs � iDus + dsDzs)(bsDzs þ iDus + dsDzs)sinc2(tsDzs)
i

þ 1
8

h
cos2 (tDz)+ 2Du cos (tDz) sinc(tDz)

þ (bDz� iDu+ dDz)(bDzþ iDu+ dDz)sinc2(tDz)
i

+
1
4
<
n
ei(asDzs�aDzþc)

h
cos (tsDzs)+ i(bsDzs � iDus + dsDzs) sinc(tsDzs)

i
�
h
cos (tDz)+ i(bDz� iDu+ dDz) sinc(tDz)

io
, (A 7)

normalized here to give values in the range [0, 1]. Equation (A 7) reduces to

I(+45�,c)
DIC ¼ 1

4

h
1+ cos (asDzs � aDzþ c)

i
, (A 8)

for βs = γs = δs = β = γ = δ = 0. Equation (A 8) is the result usually quoted in simple descriptions of
standard DIC.
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