32,260 research outputs found
A continuum-microscopic method based on IRBFs and control volume scheme for viscoelastic fluid flows
A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the solution. The proposed method is demonstrated with the solution of the start-up Couette flow of the Hookean and FENE dumbbell model fluids
Large-scale energy spectra in surface quasi-geostrophic turbulence
The large-scale energy spectrum in two-dimensional turbulence governed by the
surface quasi-geostrophic (SQG) equation
is studied. The nonlinear transfer of this system conserves the two quadratic
quantities and
(kinetic energy), where denotes
a spatial average. The energy density is bounded and its spectrum
is shallower than in the inverse-transfer range. For
bounded turbulence, in the low-wavenumber region can be bounded by
where is a constant independent of but dependent on the domain
size. Results from numerical simulations confirming the theoretical predictions
are presented.Comment: 11 pages, 4 figures, to appear in JF
Lunar nuclear power feasibility study
Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base
Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization
This paper proposes an algorithmic framework for solving parametric
optimization problems which we call adjoint-based predictor-corrector
sequential convex programming. After presenting the algorithm, we prove a
contraction estimate that guarantees the tracking performance of the algorithm.
Two variants of this algorithm are investigated. The first one can be used to
solve nonlinear programming problems while the second variant is aimed to treat
online parametric nonlinear programming problems. The local convergence of
these variants is proved. An application to a large-scale benchmark problem
that originates from nonlinear model predictive control of a hydro power plant
is implemented to examine the performance of the algorithms.Comment: This manuscript consists of 25 pages and 7 figure
Parametrization of global attractors experimental observations and turbulence
This paper is concerned with rigorous results in the theory of turbulence and fluid flow. While derived from the abstract theory of attractors in infinite-dimensional dynamical systems, they shed some light on the conventional heuristic theories of turbulence, and can be used to justify a well-known experimental method.
Two results are discussed here in detail, both based on parametrization of the attractor. The first shows that any two fluid flows can be distinguished by a sufficient number of point observations of the velocity. This allows one to connect rigorously the dimension of the attractor with the Landau–Lifschitz ‘number of degrees of freedom’, and hence to obtain estimates on the ‘minimum length scale of the flow’ using bounds on this dimension. While for two-dimensional flows the rigorous estimate agrees with the heuristic approach, there is still a gap between rigorous results in the three-dimensional case and the Kolmogorov theory.
Secondly, the problem of using experiments to reconstruct the dynamics of a flow is considered. The standard way of doing this is to take a number of repeated observations, and appeal to the Takens time-delay embedding theorem to guarantee that one can indeed follow the dynamics ‘faithfully’. However, this result relies on restrictive conditions that do not hold for spatially extended systems: an extension is given here that validates this important experimental technique for use in the study of turbulence.
Although the abstract results underlying this paper have been presented elsewhere, making them specific to the Navier–Stokes equations provides answers to problems particular to fluid dynamics, and motivates further questions that would not arise from within the abstract theory itself
Sustainable Growth and Ethics: a Study of Business Ethics in Vietnam Between Business Students and Working Adults
Sustainable growth is not only the ultimate goal of business corporations but also the primary target of local governments as well as regional and global economies. One of the cornerstones of sustainable growth is ethics. An ethical organizational culture provides support to achieve sustainable growth. Ethical leaders and employees have great potential for positive influence on decisions and behaviors that lead to sustainability. Ethical behavior, therefore, is expected of everyone in the modern workplace. As a result, companies devote many resources and training programs to make sure their employees live according to the high ethical standards. This study provides an analysis of Vietnamese business students’ level of ethical maturity based on gender, education, work experience, and ethics training. The results of data from 260 business students compared with 704 working adults in Vietnam demonstrate that students have a significantly higher level of ethical maturity. Furthermore, gender and work experience are significant factors in ethical maturity. While more educated respondents and those who had completed an ethics course did have a higher level of ethical maturity, the results were not statistically significant. Analysis of the results along with suggestions and implications are provided
Novel duality in disorder driven local quantum criticality
We find that competition between random Kondo and random magnetic
correlations results in a quantum phase transition from a local Fermi liquid to
a spin liquid. The local charge susceptibility turns out to have exactly the
same critical exponent as the local spin susceptibility, suggesting novel
duality between the Kondo singlet phase and the critical local moment state
beyond the Landau-Ginzburg-Wilson symmetry breaking framework. This leads us to
propose an enhanced symmetry at the local quantum critical point, described by
an O(4) vector for spin and charge. The symmetry enhancement serves mechanism
of electron fractionalization in critical impurity dynamics, where such
fractionalized excitations are identified with topological excitations
Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel
The statistical-thermodynamic dislocation theory developed in previous papers
is used here in an analysis of high-temperature deformation of aluminum and
steel. Using physics-based parameters that we expect theoretically to be
independent of strain rate and temperature, we are able to fit experimental
stress-strain curves for three different strain rates and three different
temperatures for each of these two materials. Our theoretical curves include
yielding transitions at zero strain in agreement with experiment. We find that
thermal softening effects are important even at the lowest temperatures and
smallest strain rates.Comment: 7 pages, 8 figure
- …