221 research outputs found
Machine learning classification: case of Higgs boson CP state in H to tau tau decay at LHC
Machine Learning (ML) techniques are rapidly finding a place among the
methods of High Energy Physics data analysis. Different approaches are explored
concerning how much effort should be put into building high-level variables
based on physics insight into the problem, and when it is enough to rely on
low-level ones, allowing ML methods to find patterns without explicit physics
model.
In this paper we continue the discussion of previous publications on the CP
state of the Higgs boson measurement of the H to tau tau decay channel with the
consecutive tau^pm to rho^pm nu; rho^pm to pi^pm pi^0 and tau^pm to a_1^pm nu;
a_1^pm to rho^0 pi^pm to 3 pi^pm cascade decays. The discrimination of the
Higgs boson CP state is studied as a binary classification problem between
CP-even (scalar) and CP-odd (pseudoscalar), using Deep Neural Network (DNN).
Improvements on the classification from the constraints on directly
non-measurable outgoing neutrinos are discussed. We find, that once added, they
enhance the sensitivity sizably, even if only imperfect information is
provided. In addition to DNN we also evaluate and compare other ML methods:
Boosted Trees (BT), Random Forest (RF) and Support Vector Machine (SVN).Comment: 1+20 pages, 9 figures, 6 tables, extended content and improved
readabilit
Photo-induced relaxation of magnetization in molecular magnet
The experimental study of photo-induced magnetization of hybrid
molecular magnet containing cobalt(II) and tungsten(V) magnetic centers
bridged by 4,40
-bpy and CN− is presented. The observed increase in magnetization rate is attributed to the defects due to inter-valence transfer between
CoIIWV *) CoIIIWIV. The time evolution of magnetization is parameterized
by the power law rather than exponential function
Mapping suitable great ape habitat in and around the Lobéké National Park, South-East Cameroon
Abstract As a result of extensive data collection efforts over the last 20?30 years, there is quite a good understanding of the large-scale geographic distribution and range limits of African great apes. However, as human activities increasingly fragment great ape spatial distribution, a better understanding of what constitutes suitable great ape habitat is needed to inform conservation and resource extraction management. Chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) inhabit the Lobéké National Park and its surrounding forest management units (FMUs) in South-East Cameroon. Both park and neighboring forestry concessions require reliable evidence on key factors driving great ape distribution for their management plans, yet this information is largely missing and incomplete. This study aimed at mapping great ape habitat suitability in the area and at identifying the most influential predictors among three predictor categories, including landscape predictors (dense forest, swampy forest, distance to water bodies, and topography), human disturbance predictors (hunting, deforestation, distance to roads, and population density), and bioclimatic predictor (annual precipitation). We found that about 63% of highly to moderately suitable chimpanzee habitat occurred within the Lobéké National Park, while only 8.4% of similar habitat conditions occurred within FMUs. For gorillas, highly and moderately suitable habitats occurred within the Lobéké National Park and its surrounding FMUs (82.6% and 65.5%, respectively). Key determinants of suitable chimpanzee habitat were hunting pressure and dense forest, with species occurrence probability optimal at relatively lower hunting rates and at relatively high-dense forest areas. Key determinants of suitable gorilla habitat were hunting pressure, dense forests, swampy forests, and slope, with species occurrence probability optimal at relatively high-dense and swampy forest areas and at areas with mild slopes. Our findings show differential response of the two ape species to forestry activities in the study area, thus aligning with previous studies
Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design
We use steady-state and time-resolved photoluminescence (PL) spectroscopy to investigate the luminescent properties of a sulfonated poly(diphenylenevinylene) lithium salt (PDV.Li) in water/propanol solutions at different concentrations, with a view to assessing its aggregation behavior. In particular, we compare results from uninsulated PDV.Li and cyclodextrin-threaded PDV.Li polyrotaxane (PDV.Li⊂β-CD). We find that addition of 1-propanol (≥20 weight%) leads to a significant blue-shift (of ∼0.20 eV) of the PL spectra, that we assign to suppressed interchain aggregation in PDV.Li solutions, with a concomitant fourfold increase in the fluorescence quantum efficiency (i.e. from 14 to 60%). Surprisingly, a moderate concentration of propanol increases further the luminescence efficiency even for PDV.Li⊂β-CD, whose supramolecular encapsulation already provides a shield against aggregation. Indeed, addition of propanol reduces the solvent polarity, and therefore helps solubilizing these materials that are still largely aromatic in nature. Interestingly, however, both uninsulated PDV.Li and polyrotaxane solutions exhibit signs of aggregation at high propanol fraction (>70%) with a distinctively weaker coupling than that of interchain states in PDV.Li at high water concentration and in pure water in particular. While we ascribe such behavior to a poor solvation of the polar moieties, we also report a different strength of aggregation for PDV.Li and PDV.Li⊂β-CD that can be attributed to the presence of the cyclodextrin rings. In PDV.Li⊂β-CD hydrogen bonding between the cyclodextrin rings may lead to closer packing between the polymer chains. We therefore suggest that a content of propanol between 30 and 70% provides a good balance of hydrophobic and hydrophilic interactions both for PDV.Li and PDV.Li⊂β-CD
Change Patterns in Use: A Critical Evaluation
Process model quality has been an area of considerable research efforts. In this context, the correctness-by-construction principle of change patterns provides promising perspectives. However, using change patterns for model creation imposes a more structured way of modeling. While the process of process modeling (PPM) based on change primitives has been investigated, little is known about this process based on change patterns. To obtain a better understanding of the PPM when using change patterns, the arising challenges, and the subjective perceptions of process designers, we conduct an exploratory study. The results indicate that process designers face little problems as long as control-flow is simple, but have considerable problems with the usage of change patterns when complex, nested models have to be created. Finally, we outline how effective tool support for change patterns should be realized.This research is supported by Austrian Science Fund (FWF): P23699-N23.Weber, B.; Pinggera, J.; Torres Bosch, MV.; Reichert, M. (2013). Change Patterns in Use: A Critical Evaluation. En Enterprise, Business-Process and Information Systems Modeling, BPMDS 2013. Springer Verlag. 261-276. https://doi.org/11007/978-3-642-38484-4_19S26127
A π-Extended Donor-Acceptor-Donor Triphenylene Twin linked via a Pyrazine-bridge
Beta-amino triphenylenes can be accessed via palladium catalyzed amination of the corresponding triflate using benzophe-none imine. Transformation of amine 6 to benzoyl amide 18 is also straightforward and its wide mesophase range demon-strates that the new linkage supports columnar liquid crystal formation. Amine 6 also undergoes clean aerobic oxidation to give a new twinned structure linked through an electron-poor pyrazine ring. The new discotic liquid crystal motif contains donor and acceptor fragments, and is more oval in shape rather than disk-like. It forms a wide range columnar mesophase. Absorption spectra are strong and broad; emission is also broad and occurs with a Stokes shift of ca. 0.7 eV, indicative of charge-transfer characte
Project Status of the Polish Synchrotron Radiation Facility Solaris
Abstract in Undetermined The Polish synchrotron radiation facility Solaris is being built at the Jagiellonian University in Krakow. The project is based on an identical copy of the 1.5 GeV storage ring being concurrently built for the MAX IV project in Lund, Sweden. A general description of the facility is given together with a status of activities. Unique features associated with Solaris are outlined, such as infrastructure, the injector and operational characteristics
The many faces of nitric oxide: cytotoxic, cytoprotective or both
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74882/1/j.1365-2982.2007.00958.x.pd
- …