16 research outputs found

    A Study of Cyg OB2: Pointing the Way Towards Finding Our Galaxy's Super Star Clusters

    Full text link
    New optical MK classification spectra have been obtained for 14 OB star candidates identified by Comeron et al. (2002) and presumed to be possible members of the Cyg OB2 cluster. All 14 candidate OB stars observed are indeed early-type stars, strongly suggesting the remaining 31 candidates identified by Comeron et al. are also early-type stars. However, as many as half of the new stars appear to be significantly older than the previously studied optical cluster, making their membership in Cyg OB2 suspect. Despite this, the recognition of Cyg OB2 being a more massive and extensive star cluster than previously realized, along with the recently recognized candidate super star cluster Westerlund 1 only a few kpc away (Clark & Negueruela 2002), reminds us that we are woefully under-informed about the massive cluster population in our Galaxy. Extrapolations of the locally derived cluster luminosity function indicate 10s to perhaps 100 of these very massive open clusters (Mcl ~ 10^4 M_sun, Mv ~ -11) should exist within our galaxy. Radio surveys will not detect these massive clusters if they are more than a few million years old. Our best hope for remedying this shortfall is through deep infrared searches and follow up near-infrared spectroscopic observations, as was used by Comeron et al. to locate candidate members of the Cyg OB2 association.Comment: 30 pages, 12 figures, ApJ in pres

    Observations of H3+ in the Diffuse Interstellar Medium

    Get PDF
    Surprisingly large column densities of H3+ have been detected using infrared absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12, Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard model of diffuse cloud chemistry, our H3+ column densities imply unreasonably long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary millimeter-wave, infrared, and visible observations of related species suggest that the chemical model is incorrect and that the number density of H3+ must be increased by one to two orders of magnitude. Possible solutions include a reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller value of the H3+ dissociative recombination rate constant than implied by laboratory experiments.Comment: To be published in Astrophysical Journal, March 200

    A Radial Velocity Survey of the Cygnus OB2 Association

    Get PDF
    We conducted a radial velocity survey of the Cygnus OB2 Association over a 6 year (1999 - 2005) time interval to search for massive close binaries. During this time we obtained 1139 spectra on 146 OB stars to measure mean systemic radial velocities and radial velocity variations. We spectroscopically identify 73 new OB stars for the first time, the majority of which are likely to be Association members. Spectroscopic evidence is also presented for a B3Iae classification and temperature class variation (B3 - B8) on the order of 1 year for Cygnus OB2 No. 12. Calculations of the intial mass function with the current spectroscopic sample yield Gamma = -2.2 +/- 0.1. Of the 120 stars with the most reliable data, 36 are probable and 9 are possible single-lined spectroscopic binaries. We also identify 3 new and 8 candidate double-lined spectroscopic binaries. These data imply a lower limit on the massive binary fraction of 30% - 42%. The calculated velocity dispersion for Cygnus OB2 is 2.44 +/- km/s, which is typical of open clusters. No runaway OB stars were found.Comment: 56 pages, 23 figures, 5 tables, accepted for publication in the Astrophysical Journa

    The eclipsing, double-lined, Of supergiant binary Cyg OB2-B17

    Get PDF
    Massive, eclipsing, double-lined, spectroscopic binaries are not common but are necessary to understand the evolution of massive stars as they are the only direct way to determine stellar masses. They are also the progenitors of energetic phenomena such as X-ray binaries and gamma-ray bursts. We present a photometric and spectroscopic analysis of the candidate binary system Cyg OB2-B17 to show that it is indeed a massive evolved binary. We utilise V band and white-light photometry to obtain a light curve and period of the system, and spectra at different resolutions to calculate preliminary orbital parameters and spectral classes for the components. Our results suggest that B17 is an eclipsing, double-lined, spectroscopic binary with a period of 4.0217+/-0.0004 days, with two massive evolved components with preliminary classifications of O7 and O9 supergiants. The radial velocity and light curves are consistent with a massive binary containing components with similar luminosities, and in turn with the preliminary spectral types and age of the association.Comment: 10 pages, 10 figures (1 degraded), accepted for publication in Astronomy and Astrophysic

    Quantitative analysis of WC stars: Constraints on neon abundances from ISO/SWS spectroscopy

    Get PDF
    Neon abundances are derived in four Galactic WC stars -- gamma Vel (WR11, WC8+O7.5III), HD156385 (WR90, WC7), HD192103 (WR135, WC8), and WR146 (WC5+O8) - using mid-infrared fine structure lines obtained with ISO/SWS. Stellar parameters for each star are derived using a non-LTE model atmospheric code (Hillier & Miller 1998) together with ultraviolet (IUE), optical (INT, AAT) and infrared (UKIRT, ISO) spectroscopy. In the case of gamma Vel, we adopt results from De Marco et al. (2000), who followed an identical approach. ISO/SWS datasets reveal the [NeIII] 15.5um line in each of our targets, while [NeII] 12.8um, [SIV] 10.5um and [SIII] 18.7um are observed solely in gamma Vel. Using a method updated from Barlow et al. (1988) to account for clumped winds, we derive Ne/He=3-4x10^-3 by number, plus S/He=6x10^-5 for gamma Vel. Neon is highly enriched, such that Ne/S in gamma Vel is eight times higher than cosmic values. However, observed Ne/He ratios are a factor of two times lower than predictions of current evolutionary models of massive stars. An imprecise mass-loss and distance were responsible for the much greater discrepancy in neon content identified by Barlow et al. Our sample of WC5--8 stars span a narrow range in T* (=55--71kK), with no trend towards higher temperature at earlier spectral type, supporting earlier results for a larger sample by Koesterke & Hamann (1995). Stellar luminosities range from 100,000 to 500,000 Lo, while 10^-5.1 < Mdot/(Mo/yr) < 10^-4.5, adopting clumped winds, in which volume filling factors are 10%. In all cases, wind performance numbers are less than 10, significantly lower than recent estimates. Carbon abundances span 0.08 < C/He < 0.25 by number, while oxygen abundances remain poorly constrained.Comment: 16 pages,7 figures accepted for MNRA

    Survey of O VI absorption in the Large Magellanic Cloud

    Full text link
    We present a survey of interstellar O VI absorption in the Large Magellanic Cloud (LMC) towards 70 lines of sight based on Far Ultraviolet Spectroscopic Explorer (FUSE) observations. The survey covers O VI absorption in a large number of objects in different environmental conditions of the LMC. Overall, a high abundance of O VI is present in active and inactive regions of the LMC with mean log[N(O VI)] = 14.23 atoms cm2^{-2}. There is no correlation observed between O VI absorption and emissions from the hot gas (X-ray surface brightness) or the warm gas (Hα_{\alpha} surface brightness). O VI absorption in the LMC is patchy and the properties are similar to that of the Milky Way (MW). In comparison to the Small Magellanic Cloud (SMC), O VI is lower in abundance even though SMC has a lower metallicity compared to the LMC and the MW. We present observations in 10 superbubbles of the LMC of which we detect O VI absorption in 5 superbubbles for the first time and the superbubbles show an excess O VI absorption of about 40% compared to non-superbubble lines of sight. We have also studied the properties of O VI absorption in the 30 Doradus region. Even though O VI does not show any correlation with X-ray emission for the LMC, a good correlation between log[N(O VI)] and X-ray surface brightness for 30 Doradus region is present. We also find that O VI abundance decreases with increasing distance from the star cluster R136.Comment: 25 pages, 9 figures. Accepted for publication in MNRA

    Searches for the Shell Swept up by the Stellar Wind from Cyg OB2

    Get PDF
    We investigated the kinematics of ionized gas in an extended (20 degrees by 15 degrees) region containing the X-ray Superbubble in Cygnus with the aim of finding the shell swept up by a strong wind from Cyg OB2. H-alpha observations were carried out with high angular and spectral resolutions using a Fabry-Perot interferometer attached to the 125-cm telescope at the Crimean Observatory of the Sternberg Astronomical Institute. We detected high-velocity gas motions, which could result from the expansion of the hypothetical shell at a velocity of 25-50 km/s. Given the number of OB stars increased by Knoedlseder (2000) by an order of magnitude, Cyg OB2 is shown to possess a wind that is strong enough [Lw ~= (1-2)x10^39 erg/s] to produce a shell comparable in size to the X-ray Superbubble and to a giant system of optical filaments. Based on our measurements and on X-ray and infrared observations, we discuss possible observational manifestations of the shell swept up by the wind.Comment: 14 pages, Astronomy Letter

    High resolution optical spectroscopy of an LBV-candidate inside the CygOB2 association

    Get PDF
    For the first time, we obtained the high-resolution (R=15000 and 60000) optical spectra for the extremely luminous star No.12, associated with the IR-source IRAS20308+4104, a member of the CygOB2 association. We have found about 200 spectral features in range 4552-7939AA, including the interstellar NaI, KI lines and numerous DIBs, which are the strongest absorption lines in the spectrum, along with the HeI, CII, and SiII lines. A two-dimensional spectral classification indicates that the spectral type is B5+/-0.5 Ia+. Our analysis of the Vr data shows the presence of a Vr gradient in the stellar atmosphere, caused by the infall of matter onto the star. The strong Halpha emission displays broad Thompson wings and time-variable core absorption, providing evidence that the stellar wind is inhomogeneous, and a slightly blue-shifted PCyg type absorption profile. We concluded that the wind is variable in time.Comment: 20 pages, 5 figures, 2 table

    IPHAS discoveries of young stars towards Cyg OB2 and its southern periphery

    Get PDF
    We report on the discovery of over 50 strong H alpha emitting objects towards the large OB association Cyg OB2 and the H II region DR 15 on its southern periphery. This was achieved using the INT Photometric H alpha Survey of the Northern Galactic Plane (IPHAS), combined with follow-up spectroscopy using the MMT multi-object spectrometer HectoSpec. We present optical spectra, supplemented with optical r', i' and H alpha photometry from IPHAS, and near-infrared J, H and K photometry from Two Micron All Sky Survey. The position of the objects in the (J - H) versus (H - K) diagram strongly suggests most of them are young. Many show Ca II infrared triplet emission indicating that they are in a pre-main-sequence phase of evolution of T Tauri and Herbig Ae nature. Among these, we have uncovered pronounced clustering of T Tauri stars roughly a degree south of the centre of Cyg OB2, in an arc close to the H II region DR 15, and the radio ring nebula G79.29+0.46, for which we discuss its candidacy as a luminous blue variable. The emission-line objects towards Cyg OB2 itself could be the brightest most prominent component of a population of lower mass pre-main-sequence stars that has yet to be uncovered. Finally, we discuss the nature of the ongoing star formation in Cyg OB2 and the possibility that the central OB stars have triggered star formation in the periphery
    corecore