Neon abundances are derived in four Galactic WC stars -- gamma Vel (WR11,
WC8+O7.5III), HD156385 (WR90, WC7), HD192103 (WR135, WC8), and WR146 (WC5+O8) -
using mid-infrared fine structure lines obtained with ISO/SWS. Stellar
parameters for each star are derived using a non-LTE model atmospheric code
(Hillier & Miller 1998) together with ultraviolet (IUE), optical (INT, AAT) and
infrared (UKIRT, ISO) spectroscopy. In the case of gamma Vel, we adopt results
from De Marco et al. (2000), who followed an identical approach.
ISO/SWS datasets reveal the [NeIII] 15.5um line in each of our targets, while
[NeII] 12.8um, [SIV] 10.5um and [SIII] 18.7um are observed solely in gamma Vel.
Using a method updated from Barlow et al. (1988) to account for clumped winds,
we derive Ne/He=3-4x10^-3 by number, plus S/He=6x10^-5 for gamma Vel. Neon is
highly enriched, such that Ne/S in gamma Vel is eight times higher than cosmic
values. However, observed Ne/He ratios are a factor of two times lower than
predictions of current evolutionary models of massive stars. An imprecise
mass-loss and distance were responsible for the much greater discrepancy in
neon content identified by Barlow et al.
Our sample of WC5--8 stars span a narrow range in T* (=55--71kK), with no
trend towards higher temperature at earlier spectral type, supporting earlier
results for a larger sample by Koesterke & Hamann (1995). Stellar luminosities
range from 100,000 to 500,000 Lo, while 10^-5.1 < Mdot/(Mo/yr) < 10^-4.5,
adopting clumped winds, in which volume filling factors are 10%. In all cases,
wind performance numbers are less than 10, significantly lower than recent
estimates. Carbon abundances span 0.08 < C/He < 0.25 by number, while oxygen
abundances remain poorly constrained.Comment: 16 pages,7 figures accepted for MNRA