215 research outputs found

    Innovational methods of development of intellectual labor for economy’s security

    Get PDF
    The notion β€œdevelopment of intellectual labor for the purpose of economy’s security” is viewed as development of society’s intellectual potential that includes the protected socio-economic information, developed by a person or a group of persons. The social factors that reduce economic security and their consequences in economy are given, namely: negative dynamics of implementing new progressive technologies into production, insufficient coordination of work in the sphere of innovational development, etc. The forms of intellectual development of human resources (intellectual development of personality, control over intellectual information) are offered, which bring the country’s economy to competitiveness and security. The traditional and innovational methods of intellectual labor development are studied (studying in universities and colleges, increase of personnel’s qualification in view of academic degrees (Ph.D., doctor of economics), as well as receipt of economic information through Internet resources, scientific publication, statistical information, etc.), as well as the methods of development of IT services and methods of prevention of intellectual diversions and violation of information confidentiality. It is offered to implement the program of equal initial possibilities for intellectual development of human resources in view of access to higher education, creative activities, as well as legal protection for everyone, etc. Analysis of implementation of innovational methods of intellectual labor development supposes planning activities in view of development of intellectual labor for the purpose of the region’s economy’s security.peer-reviewe

    Particular features of interrelation of motivation, values and sense of life’s meaning as subjective factors of individualizing trajectory in the system of continuous education

    Full text link
    The relevance of the problem under study is based on the fact that, as regards methodological and theoretical aspects, the problem of value and motivational sphere is poorly elaborated regarding the interrelation between professional education and professional activity and on the empirical level there is no clear understanding of how the sense of purpose of life and own professional values is related to the professional motivation. The aim of the article is to identify the specific features of the interrelation and effects of meaning of life to the professional values and motivation. The leading method of research is questionnaire method which makes it possible to identify the following: level of sense of life’s purpose – method of life-meaning orientations, specific features of professional motivation – method β€œMotivation of professional activity” and method β€œLevel of correlation between value and availability of value”. The article presents and discusses the results of empirical study of the interrelation between professional values, professional motivation and life-meaning orientations, as well as the effects of the level of life’s meaning on professional motivation. The practical value is the possibility to use the results of the research in developing programs for correcting and increasing professional motivation, as well as for developing technologies of psychology-pedagogical assistance to sense-making and professional self-identification in projecting and implementing individual educational trajectories in the continuous vocational education system. The article can be useful for specialists in professiology, teachers of technical subjects and professional consultants for forecasting professional development of a person. Β© 2016 Zavodchikov et al

    Effects of a moving X-line in a time-dependent reconnection model

    Get PDF
    In the frame of magnetized plasmas, reconnection appears as an essential process for the description of plasma acceleration and changing magnetic field topology. Under the variety of reconnection regions in our solar system, we focus our research onto the Earth's magnetotail. Under certain conditions a Near Earth Neutral Line (NENL) is free to evolve in the current sheet of the magnetotail. Reconnection in this region leads to the formation of Earth- and tailward propagating plasma bulges, which can be detected by the Cluster or Geotail spacecraft. Observations give rise to the assumption that the evolved reconnection line does not provide a steady state behavior, but is propagating towards the tail (e.g., Baker et al., 2002). Based on a time-dependent variant of the Petschek model of magnetic reconnection, we present a method that includes an X-line motion and discuss the effects of such a motion. We focus our main interest on the shock structure and the magnetic field behavior, both for the switch-on and the switch-off phase

    The effects of innovative changes influence on social and economic processes of the region development

    Get PDF
    Development of strategy of social and economic development of the Voronezh region till 2035 requires the careful analysis of a condition of all activities of the region, their interaction and interference. The special role in this process belongs to the higher school as the engine of knowledge, information and innovations. In case of all conservatism of an education system its task not only to give estimates and forecasts of the future, but also to serve as a leader of changes in all industries. The models realizing these tasks are a possibility of receipt of the effective instrument of increase in innovation of potential of economy of the region, forming of the environment which is adequately reflecting scientific and technical and economic challenges of modern realities and also developments of processes and technologies of transition of economy of the region to the principles of digital economy. Direct task of the higher school are increase in the amount of knowledge which is saved up by society, handling and transformation of information to knowledge, generation of new information and new knowledge, forming of the competitive specialist. In article approaches to an impact assessment of changes in the higher school on processes of social and economic development of the region, to classification of straight lines and side effects (spillover-effects) in the conditions of development of programs of a strategic development of the region are considered, the model of development of the higher school taking into account spillover-effect based on the principles of digital economy is offered. For the purpose of an impact assessment of changes in the higher school on processes of social and economic development in the region the task is set to analyse influence of various factors at each other, and also on basic factors of economic growth of the region

    ΠžΡ†Π΅Π½ΠΊΠ° Π΄ΠΎΠ· облучСния Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ ΠΈΡ… ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΌ поступлСнии стронция-89,90

    Get PDF
    In radiobiology circulating T-lymphocytes are used as β€œnatural biodosimeters” since the frequency of chromosomal aberrations that occur in them after radiation exposure is proportional to the accumulated dose. In addition, stable chromosomal aberrations (translocations) are detected in them years and decades after radiation exposure. Estimation of doses to circulating lymphocytes requires consideration of two dose components: the dose accumulated by the lymphocyte precursors (progenitors) in the red bone marrow; and dose accumulated by the lymphocytes in the lymphoid organs/tissues during circulation. A recently created model of T-lymphocyte exposure takes into account all these dose components, as well as the age-dependent dynamics of T-lymphocytes. The use of a model approach is especially important in assessing doses from osteotropic beta emitters (89,90Sr). They accumulate in the bone and locally expose predominately bone marrow. The dose to other lymphoid organs and tissues is much lower. The objective of this study is to evaluate the conversion factors from ingested 89,90Sr to the cumulative dose to circulating T-lymphocytes and their progenitors (DCL). For calculations, the previously developed model of T-lymphocyte exposure and new dose coefficients for the red bone marrow, estimated on the basis of a sex-and-age-dependent biokinetic model and a new dosimetric model of the human skeleton were used. As a result, the DCL values were evaluated for the first time. The age at the time of 89,90Sr intake varied from a newborn to 35 years, the age of T-lymphocyte examination (blood sampling age) was up to 75 years. The maximum values of DCL for both 90Sr and 89Sr were typical of children in the first years of life. It has been shown that doses to circulating T-lymphocytes from these radionuclides are lower than those to bone marrow, but are significantly higher than doses to other lymphoid tissues. The effect of sex on DCL is manifested for children 10 years of age and older. The area of DCL application covers the population of radioactively contaminated territories (the Urals region, the zone of the Chernobyl accident), as well as personnel of the nuclear industry enterprises.Π¦ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ€Π°Π΄ΠΈΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠ°ΠΊ «СстСствСнныС Π±ΠΈΠΎΠ΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€Ρ‹Β», ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ частота хромосомных Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² Π½ΠΈΡ… послС облучСния, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Π΅. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ хромосомныС Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΈ (транслокации) ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Π½ΠΈΡ… спустя Π³ΠΎΠ΄Ρ‹ ΠΈ дСсятилСтия послС облучСния. ΠžΡ†Π΅Π½ΠΊΠ° Π΄ΠΎΠ· Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ ΡƒΡ‡Π΅Ρ‚Π° 2 ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ²: Π΄ΠΎΠ·Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠ°ΠΌΠΈ (ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ) Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² красном костном ΠΌΠΎΠ·Π³Π΅; Π΄ΠΎΠ·Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Π² Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π°Ρ…/тканях ΠΏΡ€ΠΈ циркуляции. НСдавно созданная модСль облучСния Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ всС эти ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ возрастныС особСнности Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ². ОсобСнно Π²Π°ΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ модСльного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Π΄ΠΎΠ· ΠΎΡ‚ остСотропных Π±Π΅Ρ‚Π°-ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»Π΅ΠΉ (89,90Sr). ПослС попадания Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ ΠΎΠ½ΠΈ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² кости ΠΈ практичСски локально ΠΎΠ±Π»ΡƒΡ‡Π°ΡŽΡ‚ костный ΠΌΠΎΠ·Π³, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ·Π° Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½Ρ‹Π΅ ΠΎΡ€Π³Π°Π½Ρ‹ ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ оказываСтся сущСствСнно Π½ΠΈΠΆΠ΅. ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования являСтся ΠΎΡ†Π΅Π½ΠΊΠ° коэффициСнтов ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΎΡ‚ ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ поступлСния 89,90Sr ΠΊ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Π΅ Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈ ΠΈΡ… ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² (Π”ΠšL). Для расчСтов использовали Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΡƒΡŽ Ρ€Π°Π½Π΅Π΅ модСль облучСния Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ Π½ΠΎΠ²Ρ‹Π΅ Π΄ΠΎΠ·ΠΎΠ²Ρ‹Π΅ коэффициСнты для красного костного ΠΌΠΎΠ·Π³Π°, ΠΎΡ†Π΅Π½Π΅Π½Π½Ρ‹Π΅ Π½Π° основС половозрастной биокинСтичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ Π½ΠΎΠ²ΠΎΠΉ дозимСтричСской ΠΌΠΎΠ΄Π΅Π»ΠΈ скСлСта Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ значСния Π”ΠšL. Возраст Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚ поступлСния 89,90Sr Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π» ΠΎΡ‚ Π½ΠΎΠ²ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎ 35 Π»Π΅Ρ‚, возраст обслСдования Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² (возраст Π·Π°Π±ΠΎΡ€Π° ΠΊΡ€ΠΎΠ²ΠΈ) – Π΄ΠΎ 75 Π»Π΅Ρ‚. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… коэффициСнтов, ΠΊΠ°ΠΊ для 90Sr, Ρ‚Π°ΠΊ ΠΈ для 89Sr, Π±Ρ‹Π»ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ для Π΄Π΅Ρ‚Π΅ΠΉ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π»Π΅Ρ‚ ΠΆΠΈΠ·Π½ΠΈ. Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ·Ρ‹ Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π΄ΠΎΠ·Ρ‹ Π½Π° ККМ ΠΎΡ‚ этих Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ², Π½ΠΎ сущСствСнно Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π΄ΠΎΠ·Ρ‹ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½Ρ‹Π΅ Ρ‚ΠΊΠ°Π½ΠΈ. ВлияниС ΠΏΠΎΠ»Π° Π½Π° Π”ΠšL Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΎ для Π΄Π΅Ρ‚Π΅ΠΉ 10 Π»Π΅Ρ‚ ΠΈ ΡΡ‚Π°Ρ€ΡˆΠ΅. ΠžΠ±Π»Π°ΡΡ‚ΡŒ примСнСния Π”ΠšL ΠΎΡ…Π²Π°Ρ‚Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π±ΠΎΡ‚Π½ΠΈΠΊΠΎΠ² прСдприятий Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ насСлСниС Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎ загрязнСнных Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΉ (Π£Ρ€Π°Π»ΡŒΡΠΊΠΈΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½, Π·ΠΎΠ½Π° Π§Π΅Ρ€Π½ΠΎΠ±Ρ‹Π»ΡŒΡΠΊΠΎΠΉ Π°Π²Π°Ρ€ΠΈΠΈ)

    Uncertainty in the Representation of Orography in Weather and Climate Models and Implications for Parameterized Drag

    Get PDF
    The representation of orographic drag remains a major source of uncertainty for numerical weather prediction (NWP) and climate models. Its accuracy depends on contributions from both the model grid‐scale orography (GSO) and the subgrid‐scale orography (SSO). Different models use different source orography datasets and different methodologies to derive these orography fields. This study presents the first comparison of orography fields across several operational global NWP models. It also investigates the sensitivity of an orographic drag parameterisation to the inter‐model spread in SSO fields and the resulting implications for representing the northern hemisphere winter circulation in a NWP model. The inter‐model spread in both the GSO and the SSO fields is found to be considerable. This is due to differences in the underlying source dataset employed and in the manner in which this dataset is processed (in particular how it is smoothed and interpolated) to generate the model fields. The sensitivity of parameterised orographic drag to the inter‐model variability in SSO fields is shown to be considerable and dominated by the influence of two SSO fields: the standard deviation and the mean gradient of the SSO. NWP model sensitivity experiments demonstrate that the inter‐model spread in these fields is of first‐order importance to the inter‐model spread in parameterised surface stress, and to current known systematic model biases. The revealed importance of the SSO fields supports careful reconsideration of how these fields are generated, guiding future development of orographic drag parameterisations and re‐evaluation of the resolved impacts of orography on the flow

    Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    Get PDF
    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source-term data and the change of the approach to individual internal dose estimation (90Sr-body burden measurements and family correlations vs. village averages). Our further plan is to upgrade the TRDS-2009D and to complete a stochastic version of the dosimetry system

    ΠžΡ†Π΅Π½ΠΊΠ° Π΄ΠΎΠ· облучСния Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΌ поступлСнии Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ тропности

    Get PDF
    Assessment of the lymphocyte doses is relevant for solving a number of radiobiological problems, including the risk assessment of hemoblastosis (leukemia, multiple myeloma, lymphoma etc.), as well as the use of circulating lymphocytes as β€œnatural biodosimeters”. The latter is because the frequency of chromosomal aberrations occurring in lymphocytes following radiation exposure is proportional to the accumulated dose. Assessment of doses to the circulating lymphocytes requires due account of: first, the dose accumulated by the lymphocyte progenitors in the red bone marrow; and second, the dose accumulated during lymphocyte circulation through lymphoid organs. The models presented by International Commission on Radiological Protection (ICRP-67, ICRP-100) allow calculating the dose for specific lymphoid organs based on known level of radionuclide intakes. A recently developed model of circulating T-lymphocyte irradiation takes into account all sources of exposure and age-related dynamics of T-lymphocytes: (1) exposure of lymphocyte progenitors in red bone marrow: (2) exposure of T-lymphocytes in the lymphoid organs, taking into account the proportion of resident lymphocytes and the residence time of circulating lymphocytes in the specific lymphoid organs. The objective of the study is to assess the dose coefficients allowing for the transition from the ingestion ofΒ 141,144Ce,Β 95Zr,Β 103,106Ru,Β 95Nb to the doses accumulated in circulating T-lymphocytes. For calculations, we used the dose coefficients from ICRP publications for specific lymphoid organs, as well as published data on the residence time of circulating lymphocytes in lymphoid organs and tissues. As a result, it was shown that the doses in circulating T-lymphocytes are higher than those in the red bone marrow, but lower than the doses to the colon wall. The dose coefficients were age dependent; the maximum values were typical for newborns. The obtained dose coefficients forΒ 141,144Ce,Β 95Zr,Β 95Nb andΒ 103,106Ru can be used to estimate the tissue and organ doses based on data on the frequency of chromosomal aberrations in peripheral blood lymphocytes.ΠžΡ†Π΅Π½ΠΊΠ° Π΄ΠΎΠ· Π½Π° Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π° Π² свСтС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ряда радиобиологичСских ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΎΡ†Π΅Π½ΠΊΡƒ риска Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… гСмобластозов (Π»Π΅ΠΉΠΊΠΎΠ·, мноТСствСнная ΠΌΠΈΠ΅Π»ΠΎΠΌΠ°, Π»ΠΈΠΌΡ„ΠΎΠΌΠ° ΠΈ Π΄Ρ€.), Π° Ρ‚Π°ΠΊΠΆΠ΅ использования Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² качСствС «СстСствСнных Π±ΠΈΠΎΠ΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Β». ПослСднСС связано с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ частота хромосомных Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… послС Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ воздСйствия, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Π΅. ΠžΡ†Π΅Π½ΠΊΠ° Π΄ΠΎΠ· Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ ΡƒΡ‡Π΅Ρ‚Π° Π΄Π²ΡƒΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ²: Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, Π΄ΠΎΠ·Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠ°ΠΌΠΈ (ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ) Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² красном костном ΠΌΠΎΠ·Π³Π΅; Π° Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, Π΄ΠΎΠ·Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Π² Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π°Ρ… ΠΏΡ€ΠΈ циркуляции. МодСли, прСдставлСнныС Π² публикациях ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ комиссии ΠΏΠΎ радиологичСской Π·Π°Ρ‰ΠΈΡ‚Π΅ (ICRP-67, ICRP-100), Π΄Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΄ΠΎΠ·Ρƒ для ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΎΡ€Π³Π°Π½Π° ΠΏΡ€ΠΈ извСстном ΡƒΡ€ΠΎΠ²Π½Π΅ поступлСния Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π°. НСдавно созданная модСль облучСния Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ всС слагаСмыС Π΄ΠΎΠ·Ρ‹ ΠΈ возрастныС особСнности Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ²: 1) ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² красном костном ΠΌΠΎΠ·Π³Π΅; 2) ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½ΠΎΠΌ ΠΎΡ€Π³Π°Π½Π΅ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π΄ΠΎΠ»ΠΈ Ρ€Π΅Π·ΠΈΠ΄Π΅Π½Ρ‚Π½Ρ‹Ρ… Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ прСбывания Ρ‚Π°ΠΌ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ². ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования являСтся ΠΎΡ†Π΅Π½ΠΊΠ° Π΄ΠΎΠ·ΠΎΠ²Ρ‹Ρ… коэффициСнтов, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΎΡ‚ ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ поступлСния I4I,I44Ce, 95Zr, 103,106Ru, 95Nb ΠΊ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Π΅ Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹. Для расчСтов использовались Π΄ΠΎΠ·ΠΎΠ²Ρ‹Π΅ коэффициСнты ΠΈΠ· ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ комиссии ΠΏΠΎ радиологичСской Π·Π°Ρ‰ΠΈΡ‚Π΅ для ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ проводят Π² этих Π»ΠΈΠΌΡ„ΠΎΠΈΠ΄Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π°Ρ… ΠΈ тканях. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ·Ρ‹ Π½Π° Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π΄ΠΎΠ·Ρ‹ Π½Π° красный костный ΠΌΠΎΠ·Π³ ΠΎΡ‚ этих Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ², Π½ΠΎ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π΄ΠΎΠ·Ρ‹ Π½Π° стСнку толстой кишки. РассчитанныС Π΄ΠΎΠ·ΠΎΠ²Ρ‹Π΅ коэффициСнты зависСли ΠΎΡ‚ возраста; ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния Π±Ρ‹Π»ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ для Π½ΠΎΠ²ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ…. Π”Π°Π½Π½Ρ‹Π΅ коэффициСнты для 141,144Ce, 95Zr, 95Nb ΠΈ I03,I06Ru ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΎΠ· Π½Π° ΠΎΡ€Π³Π°Π½Ρ‹ ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ частотС хромосомных Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ

    Frequency of malignant liver formations of children (based on data from the center of pediatric oncology and haemotology from regional children’s clinical hospital)

    Get PDF
    The article presents the literature and its own data on the incidence of malignant neoplasms of the liver in children and some morphological aspects for the differential diagnosis of hepatoblastoma, hepatocarcinoma and sarcoma of the liver.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ ΠΈ собствСнныС Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ частотС встрСчаСмости злокачСствСнных Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ морфологичСскиС аспСкты для Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ диагностики гСпатобластомы, Π³Π΅ΠΏΠ°Ρ‚ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΈ саркомы ΠΏΠ΅Ρ‡Π΅Π½
    • …
    corecore