212 research outputs found

    Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement

    Get PDF
    BACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology

    Biotransformation of Silver Released from Nanoparticle Coated Titanium Implants Revealed in Regenerating Bone

    Get PDF
    Antimicrobial silver nanoparticle coatings have attracted interest for reducing prosthetic joint infection. However, few studies report in vivo investigations of the biotransformation of silver nanoparticles within the regenerating tissue and its impact on bone formation. We present a longitudinal investigation of the osseointegration of silver nanoparticle-coated additive manufactured titanium implants in rat tibial defects. Correlative imaging at different time points using nanoscale secondary ion mass spectrometry, transmission electron microscopy (TEM), histomorphometry, and 3D X-ray microcomputed tomography provided quantitative insight from the nano- to macroscales. The quality and quantity of newly formed bone is comparable between the uncoated and silver coated implants. The newly formed bone demonstrates a trabecular morphology with bone being located at the implant surface, and at a distance, at two weeks. Nanoscale elemental mapping of the bone−implant interface showed that silver was present primarily in the osseous tissue and colocalized with sulfur. TEM revealed silver sulfide nanoparticles in the newly regenerated bone, presenting strong evidence that the previously in vitro observed biotransformation of silver to silver sulfide occurs in vivo

    A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants

    Get PDF
    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants

    Using health worker opinions to assess changes in structural components of quality in a Cluster Randomized Trial.

    Get PDF
    BACKGROUND: The 'resource readiness' of health facilities to provide effective services is captured in the structure component of the classical Donabedian paradigm often used for assessment of the quality of care in the health sector. Periodic inventories are commonly used to confirm the presence (or absence) of equipment or drugs by physical observation or by asking those in charge to indicate whether an item is present or not. It is then assumed that this point observation is representative of the everyday status. However the availability of an item (consumables) may vary. Arguably therefore a more useful assessment for resources would be one that captures this fluctuation in time. Here we report an approach that may circumvent these difficulties. METHODS: We used self-administered questionnaires (SAQ) to seek health worker views of availability of key resources supporting paediatric care linked to a cluster randomized trial of a multifaceted intervention aimed at improving this care conducted in eight rural Kenyan district hospitals. Four hospitals received a full intervention and four a partial intervention. Data were collected pre-intervention and after 6 and 18 months from health workers in three clinical areas asked to score item availability using an 11-point scale. Mean scores for items common to all 3 areas and mean scores for items allocated to domains identified using exploratory factor analysis (EFA) were used to describe availability and explore changes over time. RESULTS: SAQ were collected from 1,156 health workers. EFA identified 11 item domains across the three departments. Mean availability scores for these domains were often <5/10 at baseline reflecting lack of basic resources such as oxygen, nutrition and second line drugs. An improvement in mean scores occurred in 8 out of 11 domains in both control and intervention groups. A calculation of difference in difference of means for intervention vs. control suggested an intervention effect resulting in greater changes in 5 out of 11 domains. CONCLUSION: Using SAQ data to assess resource availability experienced by health workers provides an alternative to direct observations that provide point prevalence estimates. Further the approach was able to demonstrate poor access to resources, change over time and variability across place

    Ocean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications

    Get PDF
    Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society

    Quantitative sequence-function relationships in proteins based on gene ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship between divergence of amino-acid sequence and divergence of function among homologous proteins is complex. The assumption that homologs share function – the basis of transfer of annotations in databases – must therefore be regarded with caution. Here, we present a quantitative study of sequence and function divergence, based on the Gene Ontology classification of function. We determined the relationship between sequence divergence and function divergence in 6828 protein families from the PFAM database. Within families there is a broad range of sequence similarity from very closely related proteins – for instance, orthologs in different mammals – to very distantly-related proteins at the limit of reliable recognition of homology.</p> <p>Results</p> <p>We correlated the divergence in sequences determined from pairwise alignments, and the divergence in function determined by path lengths in the Gene Ontology graph, taking into account the fact that many proteins have multiple functions. Our results show that, among homologous proteins, the proportion of divergent functions decreases dramatically above a threshold of sequence similarity at about 50% residue identity. For proteins with more than 50% residue identity, transfer of annotation between homologs will lead to an erroneous attribution with a totally dissimilar function in fewer than 6% of cases. This means that for very similar proteins (about 50 % identical residues) the chance of completely incorrect annotation is low; however, because of the phenomenon of recruitment, it is still non-zero.</p> <p>Conclusion</p> <p>Our results describe general features of the evolution of protein function, and serve as a guide to the reliability of annotation transfer, based on the closeness of the relationship between a new protein and its nearest annotated relative.</p
    • …
    corecore