83 research outputs found

    Microwave observations of spinning dust emission in NGC6946

    Full text link
    We report new cm-wave measurements at five frequencies between 15 and 18GHz of the continuum emission from the reportedly anomalous "region 4" of the nearby galaxy NGC6946. We find that the emission in this frequency range is significantly in excess of that measured at 8.5GHz, but has a spectrum from 15-18GHz consistent with optically thin free-free emission from a compact HII region. In combination with previously published data we fit four emission models containing different continuum components using the Bayesian spectrum analysis package radiospec. These fits show that, in combination with data at other frequencies, a model with a spinning dust component is slightly preferred to those that possess better-established emission mechanisms.Comment: submitted MNRA

    High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675

    Full text link
    We present 25 arcsecond resolution radio images of five Lynds Dark Nebulae (L675, L944, L1103, L1111 & L1246) at 16 GHz made with the Arcminute Microkelvin Imager (AMI) Large Array. These objects were previously observed with the AMI Small Array to have an excess of emission at microwave frequencies relative to lower frequency radio data. In L675 we find a flat spectrum compact radio counterpart to the 850 micron emission seen with SCUBA and suggest that it is cm-wave emission from a previously unknown deeply embedded young protostar. In the case of L1246 the cm-wave emission is spatially correlated with 8 micron emission seen with Spitzer. Since the MIR emission is present only in Spitzer band 4 we suggest that it arises from a population of PAH molecules, which also give rise to the cm-wave emission through spinning dust emission.Comment: accepted MNRA

    First results from the Very Small Array -- I. Observational methods

    Full text link
    The Very Small Array (VSA) is a synthesis telescope designed to image faint structures in the cosmic microwave background on degree and sub-degree angular scales. The VSA has key differences from other CMB interferometers with the result that different systematic errors are expected. We have tested the operation of the VSA with a variety of blank-field and calibrator observations and cross-checked its calibration scale against independent measurements. We find that systematic effects can be suppressed below the thermal noise level in long observations; the overall calibration accuracy of the flux density scale is 3.5 percent and is limited by the external absolute calibration scale.Comment: 9 pages, 10 figures, MNRAS in press (Minor revisions

    AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz

    Get PDF
    The Planck Early Release Compact Source Catalogue includes 26 sources with no obvious matches in other radio catalogues (of primarily extragalactic sources). Here we present observations made with the Arcminute Microkelvin Imager Small Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at declination > +10 degrees. Of the eight, four are detected and are associated with known objects. The other four are not detected with the AMI SA, and are thought to be spurious.Comment: 6 pages, 5 figures, 4 table

    Precise Measurements of Self-absorbed Rising Reverse Shock Emission from Gamma-ray Burst 221009A

    Full text link
    The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a "prompt" gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circum-burst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A which reveal an optically thick rising component from the reverse shock in unprecedented detail both temporally and in frequency space. From this, we are able to constrain the size, Lorentz factor, and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst.Comment: 11 figures, 4 table

    AMI observations of Lynds Dark Nebulae: further evidence for anomalous cm-wave emission

    Get PDF
    Observations at 14.2 to 17.9 GHz made with the AMI Small Array towards fourteen Lynds Dark Nebulae with a resolution of 2' are reported. These sources are selected from the SCUBA observations of Visser et al. (2001) as small angular diameter clouds well matched to the synthesized beam of the AMI Small Array. Comparison of the AMI observations with radio observations at lower frequencies with matched uv-plane coverage is made, in order to search for any anomalous excess emission which can be attributed to spinning dust. Possible emission from spinning dust is identified as a source within a 2' radius of the Scuba position of the Lynds dark nebula, exhibiting an excess with respect to lower frequency radio emission. We find five sources which show a possible spinning dust component in their spectra. These sources have rising spectral indices in the frequency range 14.2--17.9 GHz. Of these five one has already been reported, L1111, we report one new definite detection, L675, and three new probable detections (L944, L1103 and L1246). The relative certainty of these detections is assessed on the basis of three criteria: the extent of the emission, the coincidence of the emission with the Scuba position and the likelihood of alternative explanations for the excess. Extended microwave emission makes the likelihood of the anomalous emission arising as a consequence of a radio counterpart to a protostar or a proto-planetary disk unlikely. We use a 2' radius in order to be consistent with the IRAS identifications of dark nebulae (Parker 1988), and our third criterion is used in the case of L1103 where a high flux density at 850 microns relative to the FIR data suggests a more complicated emission spectrum.Comment: submitted MNRA

    Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties

    Get PDF
    We present follow-up observations of 97 point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4 and +60 degrees; the sources form a flux-density-limited sample complete to 1.1 Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few minutes apart -- observations with both telescopes. The spectra between 13.9 and 33.75 GHz are very different from those of bright sources at low frequency: 44 per cent have rising spectra (alpha < 0.0), where flux density is proportional to frequency^-alpha, and 93 per cent have spectra with alpha < 0.5; the median spectral index is 0.04. For the brighter sources, the agreement between VSA and WMAP 33-GHz flux densities averaged over sources is very good. However, for the fainter sources, the VSA tends to measure lower values for the flux densities than WMAP. We suggest that the main cause of this effect is Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA

    Searching for non-Gaussianity in the VSA data

    Full text link
    We have tested Very Small Array (VSA) observations of three regions of sky for the presence of non-Gaussianity, using high-order cumulants, Minkowski functionals, a wavelet-based test and a Bayesian joint power spectrum/non-Gaussianity analysis. We find the data from two regions to be consistent with Gaussianity. In the third region, we obtain a 96.7% detection of non-Gaussianity using the wavelet test. We perform simulations to characterise the tests, and conclude that this is consistent with expected residual point source contamination. There is therefore no evidence that this detection is of cosmological origin. Our simulations show that the tests would be sensitive to any residual point sources above the data's source subtraction level of 20 mJy. The tests are also sensitive to cosmic string networks at an rms fluctuation level of 105μK105 \mu K (i.e. equivalent to the best-fit observed value). They are not sensitive to string-induced fluctuations if an equal rms of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to the strings network to 74μK74 \mu K rms . We especially highlight the usefulness of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA

    Estimating the bispectrum of the Very Small Array data

    Get PDF
    We estimate the bispectrum of the Very Small Array data from the compact and extended configuration observations released in December 2002, and compare our results to those obtained from Gaussian simulations. There is a slight excess of large bispectrum values for two individual fields, but this does not appear when the fields are combined. Given our expected level of residual point sources, we do not expect these to be the source of the discrepancy. Using the compact configuration data, we put an upper limit of 5400 on the value of f_NL, the non-linear coupling parameter, at 95 per cent confidence. We test our bispectrum estimator using non-Gaussian simulations with a known bispectrum, and recover the input values.Comment: 17 pages, 16 figures, replaced with version accepted by MNRAS. Primordial bispectrum recalculated and figure 11 change
    corecore