40 research outputs found

    Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation.

    Get PDF
    Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity. Pilot studies investigating different aDBS control strategies showed promising results, but the short experimental study designs have not yet supported individualized analyses of patient-specific factors in biomarker and therapeutic response dynamics. Notwithstanding the clear theoretical advantages of a patient-tailored approach, these new stimulation possibilities open a vast and mostly unexplored parameter space, leading to practical hurdles in the implementation and development of clinical trials. Therefore, a thorough understanding of the neurophysiological and neurotechnological aspects related to aDBS is crucial to develop evidence-based treatment regimens for clinical practice. Therapeutic success of aDBS will depend on the integrated development of strategies for feedback signal identification, artifact mitigation, signal processing, and control policy adjustment, for precise stimulation delivery tailored to individual patients. The present review introduces the reader to the neurophysiological foundation of aDBS for Parkinson's disease (PD) and other network disorders, explains currently available aDBS control policies, and highlights practical pitfalls and difficulties to be addressed in the upcoming years. Finally, it highlights the importance of interdisciplinary clinical neurotechnological research within and across DBS centers, toward an individualized patient-centered approach to invasive brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Pearls & Oy-sters: Bilateral Mononeuropathic Neuralgic Amyotrophy Triggered by Bartonella henselae Infection Responsive to Immunoglobulin.

    Get PDF
    We present a case of a cat owner with a scar on his right thenar eminence, followed by lymphadenopathy in the right axilla, general malaise and fever, and subsequent onset of bilateral neuralgic amyotrophy within one week. After a comprehensive workup, cat scratch disease caused by Bartonella henselae was confirmed serologically and adequately treated. Despite antibiotic treatment, the patient presented clinically with persistent bilateral, asymmetric neuropathy of the median nerve, predominantly the interosseous anterior nerve, which was confirmed by multifocal swelling and hyperintense signal of the nerves on T2-weighted MR neurography. Electrophysiological examination confirmed axonal median neuropathies bilaterally. After an unsuccessful steroid treatment trial, the patient showed an excellent and sustained response to intravenous immunoglobulin despite a delay from symptom onset to treatment of 10 months

    Cross-Frequency Coupling and Intelligent Neuromodulation.

    Get PDF
    Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field

    Programming of subthalamic nucleus deep brain stimulation with hyperdirect pathway and corticospinal tract-guided parameter suggestions.

    Get PDF
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway (HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal tract (CST) mediates capsular side effects. The study's objective was to suggest stimulation parameters based on the activation of the HDP and CST. This retrospective study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-specific whole-brain probabilistic tractography was performed to extract the HDP and CST. Stimulation parameters from monopolar reviews were used to estimate volumes of tissue activated and to determine the streamlines of the pathways inside these volumes. The activated streamlines were related to the clinical observations. Two models were computed, one for the HDP to estimate effect thresholds and one for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out cross-validation, the models were used to suggest stimulation parameters. The models indicated an activation of 50% of the HDP at effect threshold, and 4% of the CST at capsular side effect threshold. The suggestions for best and worst levels were significantly better than random suggestions. Finally, we compared the suggested stimulation thresholds with those from the monopolar reviews. The median suggestion errors for the effect threshold and side effect threshold were 1 and 1.5 mA, respectively. Our stimulation models of the HDP and CST suggested STN DBS settings. Prospective clinical studies are warranted to optimize tract-guided DBS programming. Together with other modalities, these may allow for assisted STN DBS programming

    Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson’s disease

    Get PDF
    Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson’s disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson’s disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications

    Spectral Topography of the Subthalamic Nucleus to Inform Next-Generation Deep Brain Stimulation.

    Get PDF
    BACKGROUND The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus

    Get PDF
    Introduction: Adaptive deep brain stimulation (aDBS) has been applied in Parkinson's disease (PD), based on the presence of brief high-amplitude beta (13-35 Hz) oscillation bursts in the subthalamic nucleus (STN), which correlate with symptom severity. Analogously, average low-frequency (LF) oscillatory power (4-12 Hz) in the internal globus pallidus (GPi) correlates with dystonic symptoms and might be a suitable physiomarker for aDBS in dystonia. Characterization of pallidal bursts could facilitate the implementation of aDBS in the GPi of PD and dystonia patients. Objective and methods: We aimed to describe the bursting behaviour of LF and beta oscillations in a cohort of five GPi-DBS PD patients and compare their amplitude and length with those of a cohort of seven GPi-DBS dystonia, and six STN-DBS PD patients (n electrodes = 34). Furthermore, we used the information obtained to set up aDBS and test it in the GPi of both a dystonia and a PD patient (n = 2), using either LF (dystonia) or beta oscillations (PD) as feedback signals. Results: LF and beta oscillations in the dystonic and parkinsonian GPi occur as phasic, short-lived bursts, similarly to the parkinsonian STN. The amplitude profile of such bursts, however, differed significantly. Dystonia showed higher LF burst amplitudes, while PD presented higher beta burst amplitudes. Burst characteristics in the parkinsonian GPi and STN were similar. Furthermore, aDBS applied in the GPi was feasible and well tolerated in both diseases. Conclusion: Pallidal LF and beta burst amplitudes have different characteristics in PD and dystonia. The presence of increased burst amplitudes could be employed as feedback for GPi-aDBS

    The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces.

    Get PDF
    BACKGROUND Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration
    corecore