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A B S T R A C T

Introduction: Adaptive deep brain stimulation (aDBS) has been applied in Parkinson's disease (PD), based on the
presence of brief high-amplitude beta (13–35 Hz) oscillation bursts in the subthalamic nucleus (STN), which
correlate with symptom severity. Analogously, average low-frequency (LF) oscillatory power (4–12 Hz) in the
internal globus pallidus (GPi) correlates with dystonic symptoms and might be a suitable physiomarker for aDBS
in dystonia. Characterization of pallidal bursts could facilitate the implementation of aDBS in the GPi of PD and
dystonia patients.
Objective and methods: We aimed to describe the bursting behaviour of LF and beta oscillations in a cohort of five
GPi-DBS PD patients and compare their amplitude and length with those of a cohort of seven GPi-DBS dystonia,
and six STN-DBS PD patients (n electrodes= 34). Furthermore, we used the information obtained to set up aDBS
and test it in the GPi of both a dystonia and a PD patient (n=2), using either LF (dystonia) or beta oscillations
(PD) as feedback signals.
Results: LF and beta oscillations in the dystonic and parkinsonian GPi occur as phasic, short-lived bursts, si-
milarly to the parkinsonian STN. The amplitude profile of such bursts, however, differed significantly. Dystonia
showed higher LF burst amplitudes, while PD presented higher beta burst amplitudes. Burst characteristics in the
parkinsonian GPi and STN were similar. Furthermore, aDBS applied in the GPi was feasible and well tolerated in
both diseases.
Conclusion: Pallidal LF and beta burst amplitudes have different characteristics in PD and dystonia. The presence
of increased burst amplitudes could be employed as feedback for GPi-aDBS.

1. Introduction

The internal part of the globus pallidus (GPi) is currently the pre-
ferred target for conventional (continuous) deep brain stimulation
(cDBS) in dystonia (Balint and Bhatia, 2014) and one of the two main
targets for cDBS in Parkinson's disease (PD), together with the sub-
thalamic nucleus (STN)(Odekerken et al., 2016). In both diseases, pa-
tients show a significant improvement after cDBS implantation, being

around 30% improved in the Unified PD Rating Scale (UPDRS) part III
in PD and demonstrating a motor and disability improvement up to
60% in isolated dystonia (Moro et al., 2017). However, despite its clear
clinical benefit, cDBS still has some limitations. cDBS programming can
be troublesome and time-consuming, especially in dystonia, in which a
visible clinical response is usually delayed for weeks or months, and the
overall response across dystonia subtypes to cDBS can be limited and
difficult to predict (Picillo et al., 2016). Furthermore, side effects such

https://doi.org/10.1016/j.nbd.2018.09.014
Received 3 August 2018; Received in revised form 8 September 2018; Accepted 13 September 2018

Abbreviation: LF, Low-frequency; PD, Parkinson's disease; aDBS, Adaptive Deep Brain Stimulation; GPi, internal globus pallidus; STN, Subthalamic nucleus
⁎ Corresponding author at: Department of Neurology, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30.001, 9700 RB Groningen, The Netherlands.

1 D. Piña-Fuentes and JC van Zijl are co-first authors.
E-mail address: M.Beudel@umcg.nl (M. Beudel).

Neurobiology of Disease 121 (2019) 47–57

Available online 15 September 2018
0969-9961/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09699961
https://www.elsevier.com/locate/ynbdi
https://doi.org/10.1016/j.nbd.2018.09.014
https://doi.org/10.1016/j.nbd.2018.09.014
mailto:M.Beudel@umcg.nl
https://doi.org/10.1016/j.nbd.2018.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nbd.2018.09.014&domain=pdf


Ta
bl
e
1

C
lin

ic
al

in
fo
rm

at
io
n
of

PD
an

d
dy

st
on

ia
pa

ti
en

ts
.P

t=
pa

ti
en

t,
PD

=
Pa

rk
in
so
n'
s
di
se
as
e,

D
ys

=
dy

st
on

ia
,G

Pi
=

in
te
rn
al

gl
ob

us
pa

lli
du

s,
ST

N
=

su
bt
ha

la
m
ic

nu
cl
eu

s
M

=
m
al
e,

F
=

fe
m
al
e,

y
=

ye
ar
s,
aD

BS
=

ad
ap

ti
ve

de
ep

br
ai
n
st
im

ul
at
io
n,

U
PD

R
S
=

U
ni
fi
ed

Pa
rk
in
so
n'
s
D
is
ea
se

R
at
in
g
Sc
al
e,

LD
ED

=
le
vo

do
pa

da
ily

eq
ui
va

le
nt

do
se
,D

BS
=

de
ep

br
ai
n
st
im

ul
at
io
n,

R
=

ri
gh

t,
L
=

le
ft
.†

C
lin

ic
al

sc
or
e
af
te
r
1
ye

ar
of

D
BS

im
pl
an

ta
ti
on

.

Pt
A
ge

Se
x

PD
ty
pe

D
is
ea
se

du
ra
ti
on

(y
)

Ty
pe

of
su
rg
er
y

O
N
/O

FF
U
PD

R
S
PA

R
T
II
I

M
os
t
aff

ec
te
d
si
de

M
ed

ic
at
io
n

M
ed

ic
al

hi
st
or
y
of

dy
st
on

ia

PD
-G

Pi
1

65
M

A
ki
ne

ti
c-
R
ig
id

25
Ba

tt
er
y
re
pl
ac
em

en
t

R
ig
ht

Le
vo

do
pa

,a
m
an

ta
di
ne

12
00

m
g
LD

ED
N
o

PD
-G

Pi
2

54
M

A
ki
ne

ti
c-
R
ig
id

8
N
ew

im
pl
an

ta
ti
on

38
/1

2
Le

ft
Le

vo
do

pa
,e

nt
ac
ap

on
e
75

0
m
g
LD

ED
Y
es
.
Pe

ak
-d
os
e
dy

st
on

ia
PD

-G
Pi

3
64

F
A
ki
ne

ti
c-
R
ig
id

23
Ba

tt
er
y
re
pl
ac
em

en
t

Le
ft

D
uo

do
pa

,a
m
an

ta
di
ne

17
59

m
g
LD

ED
Y
es
.
D
ys
to
ni
c
ha

nd
.

PD
-G

Pi
4

64
M

A
ki
ne

ti
c-
R
ig
id

11
N
ew

im
pl
an

ta
ti
on

29
/1

1
R
ig
ht

Le
vo

do
pa

,r
op

in
ir
ol
e,

am
an

ta
di
ne

11
90

m
g
LD

ED
Y
es
.
C
er
vi
ca
l
dy

st
on

ia
PD

-G
Pi

5
(a
D
BS

)
58

F
Tr
em

or
14

Ba
tt
er
y
re
pl
ac
em

en
t

R
ig
ht

Le
vo

do
pa

,p
ra
m
ip
ex
ol
e,

am
an

ta
di
ne

11
75

m
g
LD

ED
Y
es

(e
ar
ly

m
or
ni
ng

dy
st
on

ia
)

PD
-S
TN

1
71

F
A
ki
ne

ti
c-
R
ig
id

8
N
ew

im
pl
an

ta
ti
on

31
/1

1
Le

ft
Le

vo
do

pa
,p

ra
m
ip
ex
ol
e
84

4
m
g
LD

ED
N
o

PD
-S
TN

2
73

M
A
ki
ne

ti
c-
R
ig
id

17
N
ew

im
pl
an

ta
ti
on

57
/4

0
R
ig
ht

Le
vo

do
pa

,a
po

m
or
ph

in
e
25

69
m
g
LD

ED
Y
es
.
Bi
ph

as
ic

dy
st
on

ia
PD

-S
TN

3
70

M
A
ki
ne

ti
c-
R
ig
id

10
N
ew

im
pl
an

ta
ti
on

37
/1

7
R
ig
ht

Le
vo

do
pa

,r
op

in
ir
ol
e
10

98
LD

ED
Y
es

(b
ig

to
e)

PD
-S
TN

4
47

F
A
ki
ne

ti
c-
R
ig
id

8
N
ew

im
pl
an

ta
ti
on

38
/1

4
R
ig
ht

Le
vo

do
pa

,a
m
an

ta
di
ne

,a
po

m
or
ph

in
e
65

1
m
g
LD

ED
N
o

PD
-S
TN

5
55

M
Tr
em

or
5

N
ew

im
pl
an

ta
ti
on

46
/2

0
R
ig
ht

Le
vo

do
pa

,p
ra
m
ip
ex
ol
e,

ap
om

or
ph

in
e
18

08
m
g
LD

ED
Y
es

(t
or
ti
co

lli
s)

PD
-S
TN

6
59

F
A
ki
ne

ti
c-
R
ig
id

10
N
ew

im
pl
an

ta
ti
on

19
/6

R
ig
ht

Le
vo

do
pa

,r
ot
ig
ot
in
e,

se
le
gi
ni
ne

17
10

m
g
LD

ED
N
o

Pt
.

A
ge

Se
x

D
ys
to
ni
a
ty
pe

D
is
ea
se

du
ra
ti
on

(y
)

BF
M
D
R
S
PR

E/
PO

ST
†

TW
ST

R
S
PR

E/
PO

ST
†

Et
io
lo
gy

M
ed

ic
at
io
n

C
lin

ic
al

pr
es
en

ce
of

ph
as
ic

dy
st
on

ia

D
ys
-
G
Pi

1
47

M
G
en

er
al
iz
ed

(s
ec
on

da
ry
)+

sp
as
ti
c
he

m
ip
ar
es
is

11
N
ew

im
pl
an

ta
ti
on

49
/5

3
Pr
ob

.P
er
in
at
al

hy
po

xi
a

Lo
ra
ze
pa

m
Y
es
.D

is
to
ni
c
tr
em

or

D
ys
-G

Pi
2

52
M

Se
gm

en
ta
l
dy

st
on

ia
(t
or
ti
co

lli
s)

3
N
ew

im
pl
an

ta
ti
on

23
/1

4.
25

–
C
lo
na

ze
pa

m
Y
es
.J

er
ks
,
dy

st
on

ic
tr
em

or
.

Im
pr
ov

em
en

t
w
it
h
Se

ns
or
y
tr
ic
k.

D
ys
-
G
Pi

3
52

F
Se

gm
en

ta
l
dy

st
on

ia
(M

yo
cl
on

us
-d
ys
to
ni
a)

33
N
ew

im
pl
an

ta
ti
on

25
.2
5/

12
22

.5
/1

7.
5

–
Pr
op

ra
no

lo
l,
zo

lp
id
em

Y
es
.I
m
pr
ov

em
en

t
w
it
h
se
ns
or
y

tr
ic
k

D
ys
-
G
Pi

4
63

M
C
er
vi
ca
l
dy

st
on

ia
20

N
ew

im
pl
an

ta
ti
on

19
.5
/1

1.
25

16
.5
/1

3.
5

–
C
lo
na

ze
pa

m
Y
es

D
ys
-
G
Pi

5
63

M
Se

gm
en

ta
l
dy

st
on

ia
(t
or
ti
co

lli
s
an

d
or
om

an
di
bu

la
r)
+

H
ol
m
es

tr
em

or
63

N
ew

im
pl
an

ta
ti
on

13
.7
5/

5
20

/8
.5

Pr
ob

.P
er
in
at
al

hy
po

xi
a

C
lo
na

ze
pa

m
Y
es

D
ys
-
G
Pi

6
65

F
Se

gm
en

ta
l
dy

st
on

ia
(t
or
ti
co

lli
s)

12
N
ew

im
pl
an

ta
ti
on

15
.2
5/

12
22

/1
3

–
–

Y
es
,d

ys
to
ni
c
tr
em

or
D
ys
-
G
Pi

7
(a
D
BS

)
65

F
Bl
ep

ha
ro
sp
as
m

an
d
or
om

an
di
bu

la
r
dy

st
on

ia
(M

ei
ge

's
sy
nd

ro
m
e)

9
Ba

tt
er
y

re
pl
ac
em

en
t

–
Bo

tu
lin

um
to
xi
n
ev

er
y

10
w
ee
ks

Y
es

D. Piña-Fuentes et al. Neurobiology of Disease 121 (2019) 47–57

48



as dystonia / dyskinesias (in PD), parkinsonism (in dystonia) or dys-
arthria (in both conditions) may occur (Odekerken et al., 2016;
Vidailhet et al., 2013).

With the aim of improving efficacy and limiting side effects, adaptive
DBS (aDBS) systems which only stimulate when pathological neural
activity and/or clinical symptoms are present are currently being ex-
plored (Beudel and Brown, 2016). Preliminary evidence shows that this
new DBS technique is at least as efficacious as cDBS (Arlotti et al., 2018;
Little et al., 2013; Piña-Fuentes et al., 2017), whereas aDBS may induce
fewer side effects and reduce energy consumption (Little et al., 2016;
Rosa et al., 2017). In PD, this adaptive form of DBS is based on the level
of exaggerated beta (13–35 Hz) oscillations in the STN, which have
been correlated with contralateral parkinsonian symptoms (Neumann
et al., 2016). Beta oscillations occur in phasic bursts (Little et al., 2013),
and the characteristics of those bursts are reactive to treatment re-
sponse. Specifically, their amplitude and duration positively correlate
with clinical symptoms, and a reduction on both parameters is seen
after levodopa (Tinkhauser et al., 2017b) and aDBS (Tinkhauser et al.,
2017a) (but only a reduction in amplitude in cDBS). Moreover, the
coefficient of variation (CoV) of beta oscillations —an indicator of the
variability of a signal over time— is negatively correlated with the
severity of parkinsonian symptoms, and increases after levodopa ad-
ministration (Little et al., 2012). Such dynamic properties of beta os-
cillations have made it possible to implement them as physiomarker in
aDBS (Arlotti et al., 2018). These exaggerated oscillations are not only
restricted to the STN, but also prominently present in the GPi of PD
patients (Jimenez-Shahed et al., 2016; Silberstein et al., 2003; Tsiokos
et al., 2017) and they are synchronized between nuclei when measured
simultaneously (Brown et al., 2001). This phenomenon indicates a
general pathological oscillatory status within the basal ganglia circuitry
(Chiken and Nambu, 2016).

Analogously, a prominent pallidal low-frequency (LF;± 4–12 Hz)
oscillatory activity has been reported across many dystonia subtypes
(Piña-Fuentes et al., 2018). Early studies revealed that an increased
musculo-muscular dystonic drive in the theta (4–7 Hz) band was pre-
sent in cervical dystonia (Tijssen et al., 2000), as well as a correlation of
LF oscillations in the GPi with multi-unit neuronal activity and dystonic
electromyogram (EMG) periods (Chen et al., 2006; Chu Chen et al.,
2006). LF oscillations in the GPi have been shown to be especially co-
herent with EMG phasic dystonic components (Liu et al., 2006). Pro-
minent LF oscillations in dystonia have been also found at a single-unit
level of GPi microelectrode recordings (Starr et al., 2005). Further
evidence for a role of GPi-LF power in dystonia comes from EMG and
intra-operative local field potential (LFP) recordings, which showed
that LF power and coherence are suppressed by DBS and that their rate
of suppression correlates with the improvement of the phasic compo-
nents of dystonia (Barow et al., 2014; Foncke et al., 2007; Neumann
et al., 2017; Wang et al., 2018). In contrast, evidence of prominent LF
oscillations in the STN of dystonia patients is scarce, mostly due to the
fact that the GPi —and not the STN, is the preferred target for DBS in
dystonia. From the two research groups that reported STN-LFPs in
dystonia, one found more prominent STN-LF oscillations in dystonia
compared to PD (Geng et al., 2017), while the other did not (Wang
et al., 2016).

Oscillatory LF and beta pallidal power has been mostly determined
by means of power spectral density (PSD) estimates. As PSD estimates
only represent the average oscillatory power, understanding the prop-
erties of the parkinsonian and dystonic GPi bursts could provide further
evidence of the behavior of oscillatory networks over time on each
disease and allow aDBS algorithms to be implemented also in the GPi
according to the physiomarker selected. In this study, we aimed to
compare the burst characteristics of the dystonic and parkinsonian GPi,
and the parkinsonian GPi versus the parkinsonian STN. This was per-
formed with the goal of determining similarities or differences between
diseases, or between different nuclei in the same disease. In addition, as
a proof of principle, we tested aDBS in the GPi of both a dystonia and a

PD patient.

2. Materials & methods

2.1. Patients

Eleven patients with PD and seven patients with dystonia who un-
derwent either DBS placement or battery replacement surgery in the
University Medical Center Groningen, the Netherlands, participated in
this study (Table 1). All patients gave written informed consent to the
study protocol, which was approved by the local ethical committee.
Five PD patients (8 electrodes) and all dystonia patients (14 electrodes)
were measured in the GPi, whereas six PD patients (12 electrodes) were
measured in the STN. Either dopaminergic or anti-dystonic medication
were suspended for least 12 h prior to the measurements.

2.2. Resting state recordings

2.2.1. Data acquisition
Intraoperative LFPs were bilaterally recorded from two quadripolar

DBS electrodes (Medtronic lead model 3387/3389), while patients were
in a supine resting state for approximately 90 s, using a sampling rate of
1000 Hz, except in two GPi-PD patients in which the recordings were
unilateral (i.e. the first patient had only one side implanted in the GPi
and a technical problem with the second patient caused that no signal
could be registered on one of the electrodes). Recordings were initially
performed either using a monopolar montage, and nasion-referenced
using a EEG/PSG headbox, (SleepRT. Rumst, Belgium), or a bipolar
montage, using contacts 0–2 and 1–3 for each DBS lead (Spike2 Version
8, Cambridge Electronic Design, Cambridge, United Kingdom). Signals
were amplified, and bandpass filtered at 1–500 Hz (BrainRT™ software)
for monopolar recordings and 3–37 Hz for bipolar recordings.

2.2.2. Signal processing
LFPs were analyzed offline using MATLAB (ver. 2018a,

Mathworks,Inc. Natick, Massachusetts, USA) and FieldTrip toolbox
(Donders Center for Cognitive Neuroimaging, University Nijmegen,
Nijmegen, the Netherlands). Monopolar channels were filtered (band-
pass at 4–35 Hz) and visually inspected, in order to select the largest
segment without artifacts. Segments of 45s were selected for further
analysis for each channel. Monopolar LFPs were re-referenced using a
bipolar montage. Remaining jump (~0–2 per recording) and electro-
cardiographic (ECG, 1 patient) artifacts were suppressed by means of a
wavelet denoising filter (Taswell, 2000) (example shown in Supple-
mentary Fig. 1). Signals were passed through a denoising filter with a
sym4 wavelet, using a Bayes method with 10 levels and a soft (jump) or
hard (ECG) threshold, with subsequent subtraction of the result from
the original signal. Artifact suppression (instead of rejection) was ne-
cessary, as continuity of the recording is essential for burst analysis.
Cutting out remaining artifacts and attaching the rest of the recording
would have induced artificial waveforms and broken such continuity.
Additionally, subharmonic powerline noise at 24 Hz was suppressed by
averaging the power of adjacent frequency bands using a symmetric
nearest neighbor filter. Each bipolar channel was normalized to its root
mean square (RMS) value to account for differences in voltage gains,
and amplitude was expressed as arbitrary units (a.u.).

2.2.3. Power spectral density (PSD)
Individual PSD estimates were obtained using Welch's method with

segments of 2000 discrete Fourier transform points and 50% overlap,
and smoothed using a moving average filter. The channel per hemi-
sphere that presented the highest combined LF-beta power (highest
area under the 4–35 Hz band calculated by integration using a trape-
zoidal method) was selected for further analysis. The resulting PSD
estimates for each group were selected for statistical analysis, using the
values of PSD bins of 0.5 Hz between 4 and 35 Hz (Table 2).
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2.2.4. Coefficient of variation (CoV)
To obtain the CoV of each bipolar channel, a continuous wavelet

transformation was performed on the selected LFPs using Morlet wa-
velets, with a sampling frequency of 1000 Hz to perform the appro-
priate scale-to-frequency conversions (45 s= 45000 values per fre-
quency bin and 140 scaled frequency bins). Afterwards, the CoV was
calculated by dividing the standard deviation (SD) of each frequency
bin over the mean value of the corresponding bin. CoV values were
averaged in four frequency bands (theta 4–8 Hz; alpha 8–12 Hz; low-
beta 13–20 Hz; and high beta 21–30 Hz) and used for statistical ana-
lysis.

2.2.5. Burst analyses
Normalized bipolar LFPs were re-filtered around the highest

peak± 3Hz in the LF and beta range. If the peak was<7Hz, the LFP
was bandpass-filtered around 7 Hz. Also, peaks at the edge of the LF/
beta transition were allowed to include frequencies of the opposite
band only if a peak of the opposite band was not included on the±3Hz
range. This resulted in two peak-filtered LFPs per bipolar LFP pro-
cessed, one around the low-frequency peak and one around the beta
peak. As each filtered LFP contained amplitude values oscillating
around zero (both positive and negative), the amplitude envelope of the
filtered signal was calculated, which depicts the overall magnitude

(absolute values) of the oscillatory activity. The amplitude envelope of
each filtered LFP was obtained by calculating the modulus of the ana-
lytical signal after applying a Hilbert transformation to the filtered LFP
(68 amplitude envelopes in total) (Fig. 1).

Bursts were calculated for every amplitude envelope by selecting a
percentile value of the total envelope as a threshold, according to
Tinkhauser et al., 2017a, 2017b(50th, 55th, 60th, 65th, 70th,75th,80th,
85th, and 90th percentile); individual bursts per amplitude envelope
were then defined as the amount of time that the amplitude envelope
remained above the selected threshold, from the moment the amplitude
exceeded the critical value until the amplitude went down below such
value. Burst amplitude was calculated by subtracting the maximum
amplitude of every burst to the critical value of the threshold selected.
Burst length was calculated as the amount of time each individual burst
lasted, measured in milliseconds. Burst duration and amplitude were
further divided in 9 arbitrary categories of equal intervals per condition
(< 0.2 to ≥0.16 a.u. in steps of 0.2 a.u. for LF amplitude,< 0.1 to
≥0.8 a.u. in steps of 0.1 a.u. for beta amplitude, and 100 to≥500ms in
steps of 50ms for burst duration), in order to visualize progressive
transitions between low and high values. The amount of bursts present
in each category were further expressed as percentages of the total
amount of bursts of each amplitude envelope. Moreover, the total
amount of bursts from the Dystonia-GPi and PD-GPi amplitude envel-
opes were pooled and divided into quartiles. Each burst was then as-
signed into an amplitude quartile and a length quartile. The same
procedure was repeated for the PD-GPi and PD-STN bursts.

2.3. aDBS recordings

2.3.1. Data acquisition aDBS
Additionally, aDBS was tested on both the last Dystonia-GPi and PD-

GPi patients (Dys-GPi7 and PD-GPi5). Bilateral recordings were per-
formed using a custom-made amplifier (Little et al., 2016) and script,
either from the contacts 0–2 or 1–3, while stimulation was administered
using contacts 1 or 2, respectively. Three conditions —namely no sti-
mulation (NoStim), cDBS and aDBS, were applied while the patient was
in a supine resting state, at a frequency of 135 Hz and with a pulse
width of 60 μs. Prior to the trials, a brief (± 30 s) recording was per-
formed from both the upper and lower contact pairs, with the LFPs
bandpass filtered at 3–37 Hz. For each contact, either the low-frequency
(dystonia) or beta (PD) spectral peak were obtained and used to set the
central frequency for online filtering± 3Hz (Fig. 2). Amplitude en-
velopes were obtained from the filtered LFPs, and a threshold was de-
fined around ~50–60% of the total amplitude. Stimulation was swit-
ched on every time a burst was detected, and stimulation lasted until
the burst ended. A ramping period of 250ms was used every time the
stimulation was either switched on or off, in order to avoid stimulation-
induced capsular/visual responses. In the dystonia patient, aDBS re-
cordings were conducted from each contact combination (2 left, 2 right,
total 4), whereas in the PD patient the contacts with the most promi-
nent beta peak per hemisphere were used. Intraoperative recordings
lasted approximately 200 s per condition (sampling rate = 1000 Hz),
and started with NoStim due to a potential incomplete wash-out effect
by stimulation. During the PD trial, a clinical assessment using a short
version of the UPDRS (finger tapping, hand movements, pronation-su-
pination, rest tremor and postural tremor) was videotaped on each
condition and blindly scored afterwards by a movement disorders
specialist. In the Dystonia-GPi patient, we only focused on the presence
of possible side effects derived from aDBS, due to the limited in-
traoperative recording time and the delayed clinical response in dys-
tonia to DBS.

2.3.2. Stimulation fraction adaptive DBS
The total amount of time each aDBS trial lasted was divided into

smaller segments (~20 for each recording). For each segment, the total
time fraction that the stimulation was ON was determined, and

Table 2
Peaks per contact in the low frequency and beta band for the selected bipolar
LFPs per hemisphere in dystonia and PD. PD=Parkinson's disease,
Dys=dystonia, GPi= internal globus pallidus, STN= subthalamic nucleus,
SEM= standard error of the mean, LF = low-frequency, freq = frequency.

Patient Side Contact
selected

Highest LF
peak (Hz)

Highest beta
peak (Hz)

PD-GPi 01 Right 0–2 10.5 18.5
Left 0–2 7 14

PD-GPi 02 Left 1–3 9 18
PD-GPi 03 Right 0–2 5.5 28.5
PD-GPi 04 Right 1–3 7.5 15

Left 1–3 7.5 16
PD-GPi 05 Right 1–3 8 19.5

Left 0–2 7 18.5
Mean freq Peak

(± SEM)
7.7(0.5) 18.3(2.1)

Dys-GPi 01 Right 0–1 11.5 18.5
Left 2–3 11 16

Dys-GPi 02 Right 0–1 5(7) 24
Left 0–1 5(7) 23

Dys-GPi 03 Right 1–2 5(7) 14.5
Left 1–2 8 15

Dys-GPi 04 Right 0–1 6(7) 20
Left 0–1 12 19

Dys-GPi 05 Right 0–1 10 14.5
Left 2–3 10 18.5

Dys-GPi 06 Right 2–3 5.5(7) 19.5
Left 0–1 7.5 22.5

Dys-GPi 07 Right 0–2 10 17
Left 0–2 10 20.5

Mean freq Peak
(± SEM)

8.5(0.7) 18.7(0.8)

PD-STN 01 Right 1–2 11 16
Left 2–3 12 17.5

PD-STN 02 Right 0–2 8 17.5
Left 0–2 8 15.5

PD-STN 03 Right 2–3 6(7) 18
Left 2–3 7 14.5

PD-STN 04 Right 1–2 6.5(7) 27
Left 1–2 8.5 27

PD-STN 05 Right 0–1 6.5(7) 29
Left 1–2 6.5(7) 28.5

PD-STN 06 Right 1–2 9.5 19
Left 2–3 9 17.5

Mean freq Peak
(± SEM)

8.7(0.8) 22.6(2.2)
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expressed as a stimulation fraction of that segment. The stimulation
fraction is directly proportional to the amount of LF or beta amplitude
detected (i.e. more amplitude above the threshold equals a higher sti-
mulation fraction).

2.4. Statistical analysis

Statistical comparisons were performed between the Dystonia-GPi
and the PD-GPi data, and between the PD-GPi and PD-STN data. All

Fig. 1. Example of the determination of low-frequency bursts and beta bursts and their relationship with the bursting behavior of the LFP of one dystonia and one PD
patient, respectively. A) LFPs filtered around 4–35 Hz. B) LFPs were bandpass filtered around the frequency peak. In this example the left LFP was filtered
around ± 7Hz, and the right peak was filtered around 20 Hz. C) The signal envelope was obtained using the modulus of the Hilbert transformed LFP. The continuous
line indicate the median of the amplitude and the dashed line indicates the 75th percentile. D) Burst count D.1) Based on the moments that the power remains above
the 75th percentile. D.2) Based on the moments that the power remains above the median.

Fig. 2. Example of the application of adaptive DBS
based on low-frequency oscillations in dystonia.
Upper row: bipolar local field potential (LFP) derived
from the internal part of the Globus Pallidus (GPi)
filtered between 3 and 37 Hz. Second row: LFP fil-
tered between the peak in low-frequency
oscillations± 3Hz (i.e. 10 ± 3Hz). Third row:
average low-frequency amplitude envelope over
400ms moving average. The red line depicts the
threshold determined for providing stimulation, i.e.
when the amplitude is exceeding the red line, sti-
mulation is provided. Lower row: Stimulation trigger
showing at which moments high-frequency stimula-
tion was provided. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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data were visually inspected for normality using Q-Q plots. The PSD
estimates obtained with Welch's method were tested using a cluster
based two-tailed permutation t-test for independent samples using a
Montecarlo approach with 3000 permutations. The alpha level for the
cluster threshold was set at 0.05 and an alpha of 0.025 to control the
false alarm rate. CoV across frequency bands, burst amplitude and
length, and burst amplitude and length quartiles were tested using a
two-way independent ANOVA test (4× 2 design for CoV and burst
amplitude and length quartiles, and 9×2 design for burst duration and
amplitude intervals).

For the aDBS data, correlations between fraction of stimulation and
time were conducted using Spearman's rho.

3. Results

No significant differences were shown in the PSD estimates, CoV or
burst characteristics between PD-STN and PD-GPi datasets.

3.1. Power spectral density

The PSD estimates of Dystonia-GPi and PD-GPi showed two sig-
nificantly different regions. (Fig. 3). The first was located at 9–10.5 Hz
(cluster t=9.7542, p corrected=0.0427) and the second at
15.5–20 Hz (cluster t=−28.4216, p corrected= 0.0177).

3.2. Coefficient of variation

The CoV in Dystonia-GPi (0.63 ± 0.01) was significantly higher
than in PD (0.57 ± 0.01), main effect: F(1,87)= 4.9834, p=0.0284
(Fig. 4). Differences in frequency band (F(3,87)= 0.95, p=0.41), and
interaction between disease and frequency band (F(3, 87)= 0.42,
p=0.73) were not significant.

3.3. Bursts

In line with previous literature (Tinkhauser et al., 2017a, b), the
results of the burst analysis using a 75th-percentile threshold were re-
ported. Statistical results are summarized in Table 3. Complementary
burst analyses were performed across different thresholds for validation
(50th, 55th, 60th, 65th, 70th,80th, 85th, and 90th percentile). Briefly,
analyses of amplitude showed significantly higher LF burst amplitudes
in Dystonia-GPi (Fig. 5) and significantly higher beta burst amplitudes
in PD-GPi (Fig. 6). Dystonic LF bursts were more prominent in the
highest LF amplitude quartile, while parkinsonian LF bursts were more
prominent in the lowest LF amplitude quartiles. On the other hand,
dystonic beta bursts were more prominent in the lowest beta amplitude
quartile, while parkinsonian beta bursts were more prominent in the
highest beta amplitude quartile. These results remained significant
across virtually all thresholds when tested for both LF bursts and beta
bursts. Differences in burst length were significant neither for LF bursts
nor beta bursts. A thorough visual description of the different analysis
using increasing thresholds can be found in the Supplementary
Figs. 2–17.

3.4. Adaptive DBS

LFPs used for feedback in the closed-loop system of aDBS were fil-
tered around 10 ± 3Hz in Dystonia-GPi and a 18 ± 3Hz in PD-GPi.
The average stimulation voltage was matched up with the therapeutic
voltage used in practice, being in dystonia 1 V and 2.3 V in PD. GPi-
aDBS was well tolerated in both patients and only elicited transient
contractions at supraliminal voltages in the extremities contralateral to
the stimulation side. aDBS was provided in such a way that it stimulated
on average 34% of the time in the dystonia patient and 26.7% of the
time in PD. From the beginning to the end of the aDBS condition, de-
spite fixed thresholds, the stimulation fraction dropped significantly,
both in PD (ρ=−0.42, p=0.04) and dystonia (ρ=−0.45, p= 0.04)
(Fig. 7 c/d). The UPDRS subscores for the PD patient were 11 during
OFF, 7 under cDBS (37% improvement) and 4 under aDBS (64% im-
provement). Even though no systematic clinical evaluation in the dys-
tonia aDBS trial was performed, the patient reported a subjective
symptom relief under cDBS/aDBS. However, as expected, no visual
differences were perceived by the research team at the moment of
cDBS/aDBS application, most probably due to the brevity of the re-
cording.

4. Discussion

In the present study, we found that the characteristics of pallidal LF
and beta bursts are similar between the parkinsonian GPi and STN,
whereas significant differences were found in the amplitude/power of
LF and beta oscillations between the parkinsonian and the dystonic GPi.
These characteristics provided us a rationale to trial aDBS based on the
LF burst amplitude in Dystonia-GPi or beta burst amplitude in PD-GPi.

4.1. Significance of disease burst profiles

Similar to other pathophysiological findings in movement disorders
(Cilia et al., 2014; Shawky, 2014; Taylor et al., 2016) disease-related
increased oscillations are not a sine qua non (Wang et al., 2016).
Nevertheless, differences in basal-ganglia oscillatory resting spectral

Fig. 3. Upper panel Averaged resting state LFP PSD estimates for Dystonia-GPi
(blue) and PD-GPi (red) ± SEM. Shaded areas indicate clusters that sig-
nificantly differed (Shaded blue for low frequency and shaded red for beta
frequency bands). Lower panel. Same comparison for PD-STN and PD-GPi. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

D. Piña-Fuentes et al. Neurobiology of Disease 121 (2019) 47–57

52



Fig. 4. A) Coefficient of variation (CoV, standard deviation (σ)/mean (μ)) of Dystonia-GPi and PD-GPi LFPs across different frequency bands (theta: 4–8 Hz, alpha:
8–12 Hz, low beta: 13–20 Hz, high beta: 21–35 Hz) and B) CoV of PD-STN and PD-GPi LFPs. **= p < 0.05.

Fig. 5. Comparison of LF burst characteristics between dystonia-GPi and PD-GPi, and between PD-STN and PD-GPi. Upper row: LF burst amplitude and length divided
on intervals. Lower row: LF burst amplitude and length divided on quartiles. Left columns: LF burst amplitude. Right columns: LF burst length. ***Significant effect of
the interaction.
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power of PD and dystonia have been consistently described (Geng et al.,
2017; Silberstein et al., 2003; Tang et al., 2007; Weinberger et al.,
2012). This indicates a more prominent role of certain oscillations in
the pathology of movement disorders and further supports their use for
aDBS. In this article, we found that those characteristic patterns are
mainly caused by differences in burst amplitude. Wang et al. also found
that the main difference between parkinsonian and dystonic pallidal
beta bursts is related to their amplitude (Wang et al., 2018). The pre-
sence of similar burst characteristics between the parkinsonian GPi and
STN further supports this theory. In previous articles (Tinkhauser et al.,
2017a, b), the burst characteristics were assessed in response to treat-
ment, either stimulation or levodopa administration, using a common
threshold between conditions. This raises the question about which
burst characteristics (e.g. burst length) are more dependent to treat-
ment response. During our aDBS trials based on LF and beta amplitude,
we found a significant reduction in the fraction of stimulation over
time. This indicates that burst length was also decreased (bursts re-
mained above the threshold to trigger stimulation for less time). The
clear correlation of amplitude and length (Supplementary Fig. 18)
could explain why modifying one of both parameters can have re-
percussions for the other. Occasionally, brief periods of intense gen-
eralized dystonic activity are registered on the bipolar LFP recordings
(Chen et al., 2006); this might explain the increased CoV in dystonia,
showed in this article. The presence of (less prominent) LF oscillations
in PD might be partially explained by the co-occurrence of dystonic
symptoms that some PD patients experience (Tolosa and Compta,
2006).

Oscillations within the basal ganglia and cortical structures have
been widely related to (patho)physiological motor performance
(Lanciego et al., 2012). Beta oscillations are involved in maintaining a
resting state, as they decrease during movement performance
(Jurkiewicz et al., 2006). Analogously, LF have been associated with
movement ideation and performance (Popovych et al., 2016).

Fig. 6. Comparison of beta burst characteristics between dystonia-GPi and PD-GPi, and between PD-STN and PD-GPi. Upper row: beta burst amplitude and length
divided on intervals. Lower row: beta burst amplitude and length divided on quartiles. Left columns: beta burst amplitude. Right columns: beta burst length.
***Significant effect of the interaction.

Table 3
Statistical results of burst analysis. PD=Parkinson's disease, Dys=dystonia,
GPi= internal globus pallidus, LF= low frequency, SEM= standard error of
the mean.

Variables Mean
percentage
(% ± SEM)

Interaction effect
(degrees of freedom)

Significance (p)

LF burst
amplitude

Intervals F(8,197)= 3.5181 0.0008
Quartiles F(3,87)=5.8939 0.0011

-Dystonia-
GPi

Q1: 20.18 (2.18)
Q4: 29.82 (2.76)

-PD-GPi Q1: 32.51 (5.50)
Q4: 17.81 (4.65)

Beta burst
amplitude

Intervals F(8,197)= 2.2185 0.0280
Quartiles F(3,87)=4.3854 0.0066

-Dystonia-
GPi

Q1: 28.97 (3.75)
Q4: 22.08 (2.84)

-PD-GPi Q1: 22.08 (1.70)
Q4: 31.21 (4.70)

LF burst length
Intervals F(8,197)= 0.2172 0.9875
Quartiles F(3,87)=0.0916 0.9645

-Dystonia-
GPi

Q1: 24.40(2.16)
Q4: 25.35(2.43)

-PD-GPi Q1: 24.73 (1.89)
Q4: 26.51 (2.52)

Beta burst length
Intervals F(8,197)= 1.2648 0.2645
Quartiles F(3,87)=2.5687 0.0601

-Dystonia-
GPi

Q1: 25.03 (2.34)
Q4: 27.56 (1.90)

-PD-GPi Q1: 23.02 (2.08)
Q4: 22.14 (2.60)
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Therefore, the presence of subcortical exaggerated beta oscillations
shown in PD, or LF oscillations in dystonia, might indicate that affected
neuronal networks are under a oscillatory state that aberrantly pro-
motes either maintenance of the resting state (hypokinetic) or the
performance of movements (hyperkinetic), respectively.

4.2. Rationale for the implementation of aDBS to dystonia

Despite its proven effectiveness, cDBS still presents certain limita-
tions. Given the correlation of LF with phasic dystonic symptoms
(Barow et al., 2014; Liu et al., 2006; Neumann et al., 2017), aDBS de-
vices based on LF amplitude might be able to reflect the real-time status
of, at a minimum, mobile dystonia. The application of dynamic phy-
siomarkers for DBS in dystonia would allow future devices to dynami-
cally modulate stimulation and possibly, use LF as an adjuvant to fa-
cilitate the challenging endeavor of (initial) programming (Picillo et al.,
2016). In this study, we demonstrate that the LF have a dynamic be-
havior over time, coming in the form of short-lived high-amplitude
bursts, similarly to their beta counterpart in PD (Tinkhauser et al.,
2017a). This fact provides a rationale for an aDBS ON/OFF intermittent
approach based on the setting of an amplitude threshold for LF, in order
to selectively modulate high-amplitude bursts.

4.3. Testing aDBS in the GPi

To our knowledge, this is the first time that aDBS has been trialed in
the GPi of both a PD and a dystonia patient. The particular presence of
beta oscillations in our PD patient and their subsequent modulation by
aDBS suggests that adaptive basal ganglia beta modulation might also
be achieved from the GPi, in which clinical response was obtained with
both cDBS and aDBS. We also showed that aDBS in dystonia based on
the amplitude of LF bursts is technically possible and well tolerated in
an experimental setting. Even though a visible clinical response could
not be demonstrated due to the short duration of the setting, the re-
duction of LF burst amplitude/duration over time, even when stimu-
lation is not continuous, might illustrate a form of short-term plasticity
(Fenoy et al., 2014). At present however, we cannot yet say whether
there would be any clinical benefit since a response in dystonia to DBS
is usually delayed (Picillo et al., 2016). Long-term recordings (Swann
et al., 2018), using an implantable device capable of stimulating and
sensing neuronal activity, will be able to evaluate the clinical response
of dystonia to aDBS and its ‘neurophysiological fingerprint’ over time.

5. Limitations

The main limitation of this study is the short intraoperative time in
which we were able to perform the recordings. In many centers, DBS
system implantation (electrodes and battery) takes place on the same
day, which allows patients to quickly move forward to the recovery
period. This gives a small intraoperative window of opportunity to
perform the recordings. We also performed some recordings during
battery replacement operations, which have the advantage of bypassing
the stun-effect caused by electrode implantation. In light of the fact that
recording from healthy subjects is not viable due to the invasive nature
of the procedure, the comparison of normalized signals between dis-
eases, or the use of pre- and post-treatment recordings, seem to be re-
liable methods to determine which features are related to each disease.
Also, signals were normalized to account for voltage differences be-
tween electrode positions. The limited number of patients included are
mostly due to the intrinsic limitations of this type of intra-operative
measurements, especially on interventions on dystonia patients without
general anesthesia. However, even with this limitation, a significant
difference in burst amplitude was found, which together with the lit-
erature available, likely indicates a real difference in amplitude be-
tween oscillations of PD and dystonia.

6. Conclusion

This study shows that the characteristics of high-amplitude short-
lived bursts are similar between the parkinsonian GPi and STN, but
different in the dystonic and parkinsonian GPi, giving the basis for
formal trialing of GPi aDBS in dystonia and PD. Also, it indicates that
applying aDBS in the GPi of both dystonia and PD using a phasic ON/
OFF burst approach is safe and well tolerated. Chronic studies will be
able to determine the clinical efficacy of aDBS in dystonia.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nbd.2018.09.014.
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