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Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. 
Evidence from both patient and healthy participant studies suggests that CFC plays an essential 
role in neuronal computation, interregional interaction, and disease pathophysiology. The present review 
discusses methodological advances and challenges in the computation of CFC with particular emphasis 
on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and 
causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/
memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's 
disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of 
invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the 
understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease 
symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. 
Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further 
methodological improvements are required to facilitate practical and correct use in cyborg and bionic 
systems in the field.

Introduction

Cyborg and bionic systems (CBS) focus on the integration of 
organic and biomechatronic components, with the aim of 
either restoring lost function or normalizing disease symptoms. 
Examples of such techniques may include brain–computer 
interfaces or neuromodulation technologies [e.g., deep brain 
stimulation (DBS)] [1,2].

Targeting a reliable set of biomarkers is crucial for the devel-
opment of a useful CBS [3]. Electrophysiological systems such 
as the brain or heart generate oscillatory activity over a spectrum 
of frequencies. System outputs such as movement or cognitive 
process reflect a complex and nonlinear integration of oscillatory 
neural population activity [4]. This can be accessed using a range 
of approaches including invasive local field potential or electro-
corticogram recordings, or non-invasive measures with either 
electroencephalography (EEG) or magnetoencephalography.

Multiple neural oscillations across temporal and spatial scales 
participate in neural information processing [5,6]. In general, 
low-frequency oscillations are thought to control long-range 
synchronization, while high-frequency oscillations (HFOs) are 
believed to be linked to local computation [7]. The question of 
how these neural oscillations contribute to top-down neural 
transmission has raised great interest [8,9]. Oscillatory neural 

activities in multiple frequencies are modulated during a range 
of tasks (e.g., cognitive tasks) [10–12]. Furthermore, brain stim-
ulation techniques that entrain (or alter) oscillatory activity are 
in turn known to impact task performance [13,14]. This has led 
to the belief that oscillatory neural population activity has a 
causal impact on behavior [15]. In keeping with this, it is also 
becoming increasingly apparent that neurophysiological oscil-
lations may serve as a biomarker for pathophysiological states 
such as Parkinson's disease [16].

One particular type of oscillatory coupling, known as cross- 
frequency coupling (CFC), has gained great interest in medicine 
and neuroscience. CFC characterizes interactions across different 
frequency rhythms and is modulated during both physiological 
processing and pathological states, such as spasticity [17–19]. 
CFC denotes the statistical association between the phase, ampli-
tude, or frequency of 2 rhythms [17]. CFC applied on simultane-
ous recordings from different cortical areas reveals a coordinated 
information exchange in cognitive, sensory, and motor events 
from long distance to local computation [17]. There are 4 com-
monly studied types of CFC: phase–amplitude coupling (PAC), 
amplitude–amplitude coupling (AAC), phase–frequency cou-
pling, and phase–phase coupling [7].

PAC [20–22] and AAC [23,24] attracted much attention for their 
association with physiological processing and pathological states. 
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These 2 types of CFCs are depicted in Fig. 1. Figure 1F shows 
a simulation of PAC, where the activity at 13 Hz is modulated 
by the phase of a 2.5-Hz wave, forming a nested structure, i.e., 
XPAC(t) = (xp(t)+1)·sin(2π×13t), where xp(t) = sin(2π×2.5t). 
On the other hand, AAC refers to when the amplitude of the 
13-Hz activity is modulated by the envelope of a 2.5-Hz wave 
(Fig. 1G). In this case, the form of the resulting signal is XAAC(t) = 
|H[xa(t)]|·sin(2π×13t), where H[·] represents the Hilbert trans-
form (HT) of a signal xa(t) = V·sin(2π×2.5t), and V is a time- 
varying variable (Fig. 1B). Both XPAC(t) and XAAC(t) formulated 
here refer to 13-Hz activities, and both the instantaneous phase 
(Fig. 1D) and amplitude (Fig. 1E) are derived from the HT of 
the inputs.

This review seeks to offer a comprehensive overview of the 
latest developments in CFC research, with a special focus on 
methodologies, neural mechanisms, and potential applications 
in CBS, clinical interventions in particular. Firstly, the review will 
commence by defining CFC and summarizing the current state 
of knowledge regarding its methodological advances. Next, we 
will summarize the latest studies on CFC in cognitive processes, 
and various neurological disorders, including but not limited to 
Alzheimer's disease, epilepsy, and Parkinson's disease, plus dis-
cussions over the potential neuromodulation techniques for 
clinical interventions. Lastly, the review will consider the 
challenges and opportunities for the integration of CFC technol-
ogy into CBS, with future trends in this field being highlighted.

Methodological Considerations in CFC

CFC provides an approach to encode multiple bodies of CBS. 
Specifically, the slow wave encodes temporal information via 
phase coding, while the fast oscillation reflects rhythmic spiking 
activity [7]. Many methods had been introduced for the com-
putation of CFC. Traditionally, linear approaches were applied 
to quantify CFC [25–27]. Considering findings suggesting that 
CFC is prone to dynamic fluctuations [20,28,29], methods for 
computing time-varying CFC are required.

Aru et al. [30] reported risks of bias in measuring CFC along 
with several recommendations to evaluate the reliability of dif-
ferent CFC methods. Indicators to evaluate CFC methodologies 
are summarized as follows: (a) The bandwidth of the extracted 
decomposition should adequately cover its riding wave (i.e., 
amplitude modulation). (b) The effect of oscillatory nonlinearity 
on coupling strength, authentic waveform characteristics, and 
possible harmonics needs to be carefully validated. (c) The accu-
racy of the quantitative approach in calculating the instantane-
ous phase/amplitude modulations also matters. (d) Preserving 
input-related nonstationarity is important. (e) Either healthy 
control or surrogate data are needed. (f) Sustaining temporal 
structure and transient coupling is a necessity.

Extracting a broad range of phase and amplitude modula-
tions from electrophysiological oscillations is crucial for assess-
ing CFC [30,31]. The traditional Fourier transform may result 
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Fig. 1. Concepts of phase–amplitude coupling (PAC) and amplitude–amplitude coupling (AAC). (A) High-frequency oscillation (13 Hz). (B) Low-frequency oscillation (2.5 Hz). 
(C) Low-frequency oscillation with varying amplitude modulations. (D) Phase of a 2.5-Hz oscillation. (E) Envelope of xa(t) oscillation. (F) Oscillatory coupling formations of 
PAC with 2.5-Hz phase shown in (D) modulating 13-Hz amplitude shown in (A). (G) Oscillatory coupling formations of AAC with 2.5-Hz amplitude shown in (C) modulating 
13-Hz amplitude shown in (A).
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in harmonic artifacts with a loss of information [23,32–34]. 
Empirical mode decomposition (EMD)—a method of adaptive 
decomposition [35]—has been proven to capture nonlinear/
nonstationary features of irregular patterns more effectively 
than the Fourier transform. EMD decomposes data into intrin-
sic mode functions (IMFs) at different frequencies. IMFs are 
considered promising for calculating CFC [23,36]. However, 
the sifting process of EMD may result in intermittent patterns 
at different frequency ranges being mixed within the same IMF 
(i.e., mode mixing). Therefore, several advanced methods have 
been proposed for the calculation of CFC. Ensemble EMD-
based PAC eliminates the mode mixing phenomenon by itera-
tively adding Gaussian white noise to ensure refined scale in 
phase/amplitude-given components [37]. This leads to increased 
computational complexity. The proposal of masking PAC is 
computationally efficient and resolves the trade-off between 
nonlinearity and frequency specificity [38,39]. Recently, varia-
tional mode decomposition-derived PAC estimation techniques 
have been proposed. To avoid spurious couplings caused by 
dyadic filter banks or harmonics, PACs between irregular oscil-
lators around preferred center frequencies are measured [40].

Traditionally, the HT has been used to calculate phase and 
amplitude modulations. PAC can subsequently be computed 
by using metrics such as the modulation index (MI). One well-
known method to quantify MI is to measure the nonuniformity 
of the distribution of the averaged high-frequency amplitude 
over the low-frequency phase bin. Precisely, a probability dis-
tribution, P of the high-frequency amplitudes at each low- 
frequency phase can be constructed. This observed distribution 
can be compared to a uniform distribution (which would imply 
no relationship between phase and amplitude) using informa-
tion theoretic measures such as the Kullback–Leibler (KL) dis-
tance. The KL distance can then be normalized by considering 
the maximum possible entropy, resulting in MI values ranging 
from 0 to 1.

Tort et al. [41] compared 8 different PAC indicators and 
concluded that MI had the best performance. PAC can also 
be estimated through the phase-locking value (PLV) [42] or 
synchronization index (SI) [43]. Some studies used mean 
vector length (MVL) as a measure to assess the dependence 
between phase and amplitude time series by clustering com-
plex vectors [44,45]. Penny et al. compared PLV [46], MVL 
[44], and envelope-to-signal correlation (ESC) [47] with the 
general linear model and concluded that all methods compa-
rably performed with suitable conditions (e.g., long epoch 
with less noise contamination). Moreover, a growing number 
of toolboxes are devised to calculate CFC, wherein some have 
relied on Matlab such as Fieldtrip [48] and Brainstorm [49], 
and others are Python-based toolboxes such as pactools and 
Tensorpac [50]. These tools support multiple CFC measures 
and statistical analyses to obtain a corrected CFC. However, 
the common use of linear analyses could more or less result 
in spurious couplings.

After the decomposition procedure, the standard process 
to calculate coupling strength is as follows. Illustrated by the 
case of PAC, either cycle-by-cycle frequencies or instantaneous 
ones are applied to eliminate the effects of intra-wave variation 
per decomposition. To obtain the cycle-based frequencies of 
the ith decomposition of the jth channel recording, the phase 
series is unwound, then the expansion phase series at points 
in time spanning 2π integer increments is identified to gen-
erate a cycle-by-cycle conversion. The cycle-based frequency 

can be approximated by a secant to the instantaneous fre-
quency [36,37]. Here, i = 1, 2, …, N, where the value of N 
represents the total number of IMFs. Meanwhile, the phase/
amplitude modulations derived from the HT of all selected 
decompositions across montages of interest are used to assess 
the cross-channel and/or cross-decomposition coupling inten-
sity [11,41]. The statistical significance of the MI can be tested 
by generating surrogate data from individual MI-contributed 
decompositions using a bootstrap strategy in a cycle base 
[51,52]. The average and standard deviation of the permuted 
MIs are used to determine the z-score of the original MI, 
and a significance threshold (α = 0.05) can then be applied. 
A cross-frequency comodulogram can then be used to visualize 
coupling strengths. Figure 2 shows the methodology of CFC 
exemplified by a signal with a 6-Hz phase modulating a 
65-Hz amplitude. Table 1 lists the bibliography of “method-
ological advances of CFC”.

Progress of Electrophysiological Couplings in 
Physiology and Neuroscience
Information flow typically involves multiple sites of specialized 
processing [53]. CFC can provide a framework for both local 
and distributed information processing within neural net-
works, thereby serving the coordination of neural oscillations 
over multiple spatial scales [17,54–61]. Owing to this, distur-
bances of information processing in certain neurological dis-
ease states may be inferred through the observation of changes 
in CFC relative to healthy control populations [62,63]. In gen-
eral, past findings have shown that stronger coupling tends to 
occur with higher neural computational needs. For example, 
during sleep, PAC coordinates various brain rhythms and varies 
across cyclic alternating patterns (CAPs) (Fig. 3). CAPs are the 
periodic pattern of sleep comprising A and B phases, in which 
A contains 3 subtypes including A1, A2, and A3 (Fig. 3A). Past 
findings suggest that δ-α/low β PAC is stronger in subtype A1 
(Fig. 3B) than in the 2 other subtypes. This strong coupling may 
regulate sleep structure and preserve working memory [38]. 
The relatively disperse distribution of phase differences between 
δ phase and α/low β amplitude in A3 supports a weaker δ-α/
low β PAC (Fig. 3D). Table 2 shows the bibliography of the 
“progress of CFC in neuroscience and physiology”.

The role and potential of CFC as a biomarker for 
cognitive and memory tasks
CFC is believed to play a special role in regulating performance in 
cognitive and memory tasks. Oscillations in both the θ (5 to 8 Hz) 
and γ (30 to 150 Hz) bands display modulations in such tasks. 
Studies in rodents have reported that a strong coupling between 
θ and γ activities emerges when decision-making or learning tasks 
are performed [64,65]. Strong θ–γ PAC also emerges within the 
hippocampus during the performance of context-learning tasks 
[51]. Similarly, θ–γ CFC is considered to play a crucial role in 
cognition and memory in humans [10,46,55,66,67]. A recent study 
revealed that the extent of θ–γ CFC negatively correlated with the 
development of mild cognitive impairment [68], hence suggest-
ing that reductions in θ–γ coupling may relate to degenerative 
pathologies.

One reported transcranial magnetic stimulation (TMS) par-
adigm for inducing neuroplasticity is paired associative stim-
ulation (PAS). One recent study showed that PAS can increase 
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Fig. 2. Demonstrating methodology of CFC between 6-Hz phase and 65-Hz amplitude modulations. The left panels show the 5 steps to calculate CFC. The middle panels 
summarize the indicators of each step to guarantee a reliable CFC. The right panels present schematic diagrams of each step. Firstly, a raw signal with a 65-Hz amplitude 
modulated by a 6-Hz phase is illustrated. Secondly, all phase-given Sp and amplitude-given SA IMFs are calculated, wherein all IMFs are extracted by IMF-based decompositions. 
Next, the instantaneous phases φp and envelopes Aa of the corresponding IMF are obtained by HT with MI serving as a measure of coupling strength. After that, surrogate data 
are created to access the significance of MI. Lastly, a cross-frequency comodulogram is adopted to display coupling strength across multiple frequencies. The white block 
denotes the desired coupling between the 6-Hz phase and 65-Hz amplitude, while the blue block represents a spurious coupling.
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θ–γ PAC within the dorsolateral prefrontal cortex (DLPFC; an 
area of the frontal lobe that is crucially involved in executive 
functions such as working memory [69]), suggesting that PAC 
could be a potential indicator of neuroplasticity [70]. θ–γ PAC 
was reported by Rajji et al. [71] to support the organization of 
information in N-back working memory tasks. Soto and Jerbi 
[72] observed a clear decrease in θ–γ PAC during N-back trials 
that did not involve information ordering. Closed-loop audi-
tory stimulation was reported to locally modulate δ-α/low β 
coupling in the frontal area. This modulation could potentially 
be utilized to influence neuroplasticity that occurs during sleep 
in the targeted brain network [73].

The diagnosis of common neurodegenerative disorders such 
as Parkinson's disease (PD) or Alzheimer's disease (AD) can 
only be confidently made once suggestive clinical signs and 
symptoms are present. It is well recognized, however, that these 
conditions often have a prodrome [74], which can be many 
years long. PAC may serve as a biomarker of prodromal states 
of neurodegeneration. For instance, in AD, an early sign of neu-
ronal dysfunction leading to cognitive impairments could be a 
reduction in θ–γ coupling between the hippocampus and pre-
frontal cortex [75,76]. This could be relevant in terms of iden-
tifying at-risk populations and trialing both pharmacological 
and non-pharmacological neuroprotective therapies [77,78]. 
Interestingly, θ–γ coupling has been reported to be enhanced 
by the use of CBS [79,80]. For example, Etter et al. [81] used 
optogenetic stimulation to restore memory performance and 
hippocampal θ–γ PAC in a mouse model of AD. Transcranial 
alternating current stimulation (tACS) has been recently shown 
to modulate top-down control and functional connectivity 
(θ–γ coupling) across the frontal-occipital regions, leading to 

enhanced performance in working memory tasks [82]. Of note, 
stimulations at the θ–γ frequency over the trough have been 
found to impair cognitive control [83]. Hence, it could theoret-
ically be possible to develop a closed-loop cognitive rehabilita-
tion training set, integrated with techniques/paradigms such as 
PAS and cognitive exercise. Such a system is designed to increase 
θ–γ PAC feedback in the hippocampal/cortical regions to favor 
memory consolidation.

Coupling to facilitate the diagnosis and treatment  
of epilepsy: Biomarkers for seizure onset and  
non-pharmacological treatment options
HFOs may serve as a biomarker of the epileptogenic zone (EZ) 
or seizure onset zones (SOZs) [84,85]. Although HFOs occur 
more commonly within the SOZ/EZ than in other brain areas 
[86–89], they can also be generated by the nonepileptic soma-
tosensory or motor cortices at rest or during movement [90–93]. 
Therefore, the application of HFO recordings for guiding 
epilepsy surgery resection margins has been limited [94–96].

Many studies have reported that interictal HFOs in the SOZ 
are modulated by the slow-wave phase [97–100]. Ibrahim et al. 
[101] showed that PAC between HFO amplitude and θ/α phase 
was significantly higher in the SOZ than in other cortical 
regions. Also, several studies exploring CFC in epilepsy found 
that δ–γ PAC could be a promising biomarker for locating the 
SOZ/EZ [98,102]. For frontal lobe epilepsy, it has been observed 
that a prominent δ–β/γ PAC occurs around the SOZ during 
pre-seizure periods [102]. This would support a role for PAC 
in regulating seizure onset [103]. Interestingly, Guirgis et al. 
[104] observed that the presence of δ-modulated HFOs pro-
vided a satisfactory indicator of the resection margin of an EZ.

Table 1. Bibliography of methodological advances of CFC.

Steps Ref. Key points

Accessing phase 
and amplitude 
modulations

Aru et al. [30] Some potential risks of bias in measuring CFC are summarized.

Kramer et al. [32] Fourier analysis may result in harmonic artifacts.

Colgin et al. [26] The wavelet technique was applied to quantify CFC.

Pittman-Polletta 
et al. [36]

The integration of EMD enables extracting nonstationary and nonlinear broadband rhythms 
in calculating PAC.

Shi et al. [37] Ensemble EMD-based PAC eliminates the mode mixing phenomenon.

Yeh and Shi [38] Masking PAC is computationally efficient and resolves the trade-off between nonlinearity and 
frequency specificity.

Zhang et al. [40] Variational PAC avoids occurrence of spurious couplings due to dyadic filter banks or 
harmonics.

Estimating coupling 
intensity

Tort et al. [41] MI exhibited superior performance among 8 different PAC indicators.

Penny et al. [42] PLV was originally developed to quantify phase synchronization between trials.

Cohen [43] SI was presented to test CFC between upper θ and γ.

Canolty et al. [44] Coupling strengths during cognitive processes were assessed by MVL.

Bruns and 
Eckhorn [47]

ESC was proposed to measure correlations between different bands.

Statistical analysis Pittman-Polletta 
et al. [36]

To sustain the temporal structures, surrogate data with cycle-shuffled amplitude and phase 
were generated.

Visualization Yeh et al. [23] Redistributing CFC across a frequency scatter plot based on the cycle-by-cycle frequencies 
corresponding to each IMF pair.
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For some patients with drug-resistant epilepsy, the removal 
of brain tissue is not advisable due to the presence of multiple 
seizure foci or fears of postoperative functional deficits [105]. 
Developing sophisticated neural regulatory techniques, for 
instance, vagus nerve stimulation (VNS ®, LivaNova, Inc.) or 
responsive neurostimulation (RNS ®, NeuroPace, Inc.), has 
been a recent focus [106,107]. VNS and RNS were approved 
as non-pharmacological treatments for focal epilepsy by the 
U.S. Food and Drug Administration in 1997 and 2014, respec-
tively. These neurostimulation devices deliver electrical stim-
ulation with adjustable parameters to reduce the frequency 
of seizures [108]. The RNS system is designed as a closed-
loop device that delivers electrical stimulation immediately 
upon recognizing possible electrocorticogram seizure activity 
[109,110]. Meanwhile, the VNS with the recently released gener-
ator model 106 AspireSR® can trigger simulation automatically 

based on the increased heart rate, which may indicate sei-
zures [111]. Randomized trials using VNS and RNS have 
demonstrated the effectiveness of neuromodulation—with 
a responder rate of up to 50% [112–114]. However, the mech-
anisms of neurostimulation remain unclear, and this hinders 
the development of further improvements in this technology.

Movement-related neurophysiological basis and 
neuromodulation techniques for Parkinson's disease 
rehabilitation
Motor impairment in PD is characterized by excessive synchro-
nization in the β band within the basal ganglia (BG) [115,116] 
(Fig. 4B). Additionally, β power can be suppressed with both 
dopaminergic medication and stimulation and the extent of 
treatment-related suppression correlates with treatment-related 

Fig. 3. PAC associating various brain rhythms and varying by physiological states. (A) CAP consists of A and B phases, in which A contains 3 subtypes including A1, A2, and A3. 
(B) PAC comodulograms differ by phase-A subtypes, of which A1 shows stronger α/low β-amplitude-related PACs. (C) Significant differences (P < 0.0001) of δ-α/low β PACs 
among phase-A subtypes in all sleep stages except S4 were shown. (D) The distribution of phase difference between δ phase and α/low β amplitude is displayed in the polar 
histogram chart. Subtype A3 showed a relatively disperse distribution compared to the 2 other subtypes.
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clinical improvements in bradykinesia and rigidity [117–122], 
hence suggesting an important pathophysiological role of 
β oscillations. γ oscillation, in contrast, synchronizes strongly 
in the BG and thalamus at the initiation of contralateral move-
ments [123,124]. Movement-related broadband γ synchrony 
(30 to 100 Hz) increases excitability between periods of inhi-
bition, supporting interregional interaction/communication 
[125,126]. Note that the occurrence of narrowband γ activity 
(60 to 90 Hz) induced either by levodopa or DBS is linked to 
dyskinesia [127]. Studies have suggested that cross-frequency 

interactions may have a marked impact on BG information 
processing in PD [119,120]. The phase of the β waveform within 
both the primary motor cortex (M1) and the subthalamic 
nucleus (STN) has been shown to modulate broadband-γ ampli-
tude in M1 in PD [128–133]. This cortical β–γ coupling may 
also be suppressed by STN DBS.

Studies exploring the relationship between oscillatory activ-
ity and gait have revealed that low-γ frequency oscillations in 
the motor cortex are modulated by the gait phase [134] and 
central midline sites [135]. In PD, gait phases are known to 

Table 2. Bibliography of the progress of CFC in neuroscience and physiology.

Ref. Disease Subtype of CFC Key points

Axmacher et al. [10] Pharmacoresistant temporal lobe epilepsy θ–γ θ–γ PAC exhibited greater 
prominence during cognitive 
tasks.

Rajji et al. [71] Healthy θ–γ PAS increases θ–γ PAC in the 
dorsolateral prefrontal cortex.

Mondragón-Rodríguez et al. 
[75]

Alzheimer's disease θ–γ A reduction in θ–γ PAC between 
the hippocampus and 
prefrontal cortex indicates 
early cognitive impairments.

Etter et al. [81] Alzheimer's disease θ–γ Optogenetic stimulation can 
restore memory performance 
and hippocampal θ–γ PAC.

Turi et al. [83] Healthy θ–γ Stimulations at the θ–γ 
frequency over the trough 
impaired cognitive control.

Amiri et al. [97] Mesiotemporal lobe epilepsy δ/θ-HFO Interictal HFOs in the SOZ were 
modulated by δ/θ phase.

Ma et al. [102] Frontal lobe epilepsy δ–β/γ Strong δ–β/γ PAC emerges 
around the SOZ during 
pre-seizure periods.

de Hemptinne et al. [128] Parkinson's disease β–γ β phase waveform in both the 
primary M1 and STN modulate 
broadband-γ amplitude in M1.

de Hemptinne et al. [129] Parkinson's disease β–γ STN DBS can reduce β–γ 
coupling.

He et al. [136] Parkinson's disease Gait phase-α/β Gait phases associated 
modulations of α/β band 
activity in PPN.

Jin et al. [122] Parkinson's disease δ/θ-gait-related β Gait-related β amplitude is 
driven by lower-frequency 
components modulated by 
auditory stimuli.

Yin et al. [137] Parkinson's disease β–γ Increased PAC in MI indicates 
higher probabilities of gait 
problems.

Muthuraman et al. [143] Parkinson's disease γ-stimulation 
frequency

The presence of CFC suggests 
that DBS utilizes clinically 
effective frequencies to induce 
intrinsic FTG oscillations 
through a mechanism of 
entrainment.
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associate with modulations of α/β band activity within the 
pedunculopontine nucleus (PPN) [136]. Our past work has also 
shown that β band modulation within the STN is time-locked 
to contralateral steps in PD [121]. High-β synchronization is 
suppressed when the contralateral foot is raised and displays a 
rebound following a heel strike. Recently, we observed that these 
gait-related β frequency amplitude modulations could them-
selves be driven by lower-frequency components that can be 
modulated by auditory stimuli [122], hence providing a neuro-
physiological substrate for a link between auditory and motor 
processing. This can be partially explained by the fact that ele-
vated PAC in PD may result in greater (cortical) processing 
demands, which, in turn, could contribute to gait problems like 
freezing episodes [137]. Studies such as this provide insights 
into the cortical circuits that need to be modulated to target 
specific disease symptoms. The inhibitory circuit formation in 
the cortex of PD patients is more strongly inhibited in response 
to stimulation than normal individuals, indicating that the 
occurrence of cortical disinhibition could be an early, and pos-
sibly prodromal, characteristic of PD [138]. Pezzopane et al. 
[139] reported targeting θ–γ tACS to short intracortical inhi-
bition through stimulation resulted in a decrease in inhibition 
following the stimulation.

Neuromodulation techniques for PD can either be invasive 
or non-invasive. Noninvasive tools include TMS, transcranial 
direct current stimulation, and tACS, while the most fre-
quently employed invasive technique is DBS [140]. High-
frequency DBS (at frequencies of around 130 Hz) can suppress 

increased BG β activity and ameliorate symptoms such as 
bradykinesia or rigidity [141]. While conventional continuous 
DBS is already established, a promising next-generation DBS 
technique is closed-loop DBS, in which the delivery of stim-
ulation is titrated based on a neurophysiological biomarker 
[142]. For example, the CFC observed between γ oscillations 
and the volume of tissue- activated power at stimulation fre-
quency in Muthuraman et al.'s report [143] indicates that DBS 
as per clinically effective frequencies may induce intrinsic 
FTG oscillations through an entrainment mechanism. Closed- 
loop DBS has attracted a growing amount of attention for the 
treatment of PD [144]. Gilron et al. reported the effectiveness 
of adaptive DBS with the Summit RC+S (Medtronic) device. 
This adjusts stimulation parameters based on the detection 
of neurophysiological activity that may relate to particular 
symptoms such as dyskinesia [142]. A recent study showed 
that within a gait cycle, significant positive correlations were 
observed between low β power and gait muscle activities that 
can be used to forecast the gait events and freezing episodes 
[145]. This also supports the use of closed-loop neuromod-
ulation therapies that can be controlled through specific 
commands.

Thinking about rehabilitation approaches, robot-assisted 
devices such as the Tymo system (Tyromotion, Austria) have 
advantages over traditional physiotherapy (e.g., stretching and 
muscle strengthening) for impacting gait. These devices enable 
the task-oriented design of exercises and adjustment of the 
intensity of exercises [49,146–148].

Fig. 4. An example of applying CFC with multiple neuromodulations to rehabilitation interventions for individuals with Parkinson's disease. (A) A 3-dimensional gait signal 
and gait-related EEG of a PD patient with motor impairment. (B) After signal decomposition, excessive β power emerged in basal ganglia. (C) Excessive PAC between Lβ/Hβ 
and HFO in the STN was observed in a patient with PD, as shown in the left panel, which was suppressed by stimulation (middle panel), with a subsequent rebound after the 
stimulation was removed (right panel). (D) Neuromodulations, such as DBS, TMS, and sensory stimulation. (E) The varying PAC with stimulation provides feedback to the 
neuromodulation paradigm. (F) PAC results reflect the interregional interaction/communication in the brain.
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Figure 4 illustrates how CFC biomarkers can be applied to 
several neuromodulation or rehabilitation techniques. As per 
the 3-dimensional gait signal, the gait-related EEGs from a PD 
patient with motor impairment are extracted (Fig. 4A). Excessive 
β power is observed in BG after signal decomposition (Fig. 4B). 
Obvious Lβ/Hβ-HFO PAC emerges in the STN (left panel in 
Fig. 4C), while stimulation techniques, e.g., DBS, TMS, and 
sensory stimulation (Fig. 4D), can suppress the abnormal PAC 
(middle panel in Fig. 4C), with a subsequent rebound after the 
stimulation is removed (right panel in Fig. 4C). The varying 
PAC under stimulation provides feedback to the neuromodu-
lation paradigm (Fig. 4E). The PAC dynamics support the inter-
regional interaction/communication in the brain (Fig. 4F), 
which facilitates the understanding of the pathological neural 
network.

Conclusion and Future Outlook
This review focuses on the methodologies, mechanisms, and 
applications (neuro-control and rehabilitation treatment) of 
CFC in neuroscience and medicine. Reliable CFC enables char-
acterizing multi-frequency interactions and reflects how these 
coupled oscillations contribute to top-down neural transmis-
sion. CFC, PAC in particular, provides relatively precise metrics 
of entangling temporal structure in neural circuits and is, hence, 
linked to both motor and cognitive function in healthy and 
diseased states, which manifests that it holds great promise in 
serving as an electrophysiological feature to inform real-time 
neuromodulation. In addition to their use in measuring cog-
nitive and motor states, CFC metrics may also allow for the 
monitoring of disease progression and therapeutic responses, 
supporting clinicians and scientists to allocate brain regions 
and temporal periods with deteriorated neural functions.

Referenced to other biomarkers, such as band power [149], 
evoked compound action potential [150], and abnormal syn-
chrony [151], CFC may offer a deeper understanding of the 
underlying entangling oscillatory mechanisms of neurological 
disorders. By identifying the interested CFC patterns that are 
disrupted by changing physiological or pathophysiological sta-
tus, researchers can gain insight into the affected neural circuits, 
which could facilitate the development of more targeted and 
effective interventions.

We have discussed some common pitfalls to consider when 
computing CFC metrics, including techniques to avoid the 
detection of spurious CFC. The criteria proposed by Aru et al. 
can serve as quality control to avoid methodological confounds. 
The cycle-based permuted nonlinear approaches introduced in 
this review suggest a feasible path toward a more reliable CFC 
estimation.

Although CFC has been greatly developed, several chal-
lenges to implementing CFC in cyborg and bionic systems need 
to be addressed to facilitate translating CFC findings into these 
systems. One crucial challenge is the development of reliable 
and effective CFC measurement techniques to integrate into a 
CBS, relying on sensors and devices to real-time access brain 
activities, followed by translating them into control signals for 
prosthetic limbs, etc. Thus, developing promising algorithms 
to evaluate CFC intensities without introducing clear delays or 
bias is highlighted next. Successful translation of CFC findings 
into a CBS requires precise decoding of electrophysiological 
recordings and then translating CFC biomarkers into con-
trols of CBS devices. Such algorithms and controls require 

minimizing time lags and false alarms in real use. Lastly, these 
translation uses require rigorous testing and validation to 
ensure their safety, effectiveness, and reliability in real-world 
applications. These involve extensive testing and validation in 
preclinical and clinical settings, along with continued mon-
itoring and optimization of CFC-based CBS over time.

Although many challenges remain, including the handling 
of brain stimulation artifacts and real-time deployment, robust 
algorithms and controls, and rigorous testing and validation of 
these systems in real uses, there is much to be optimistic about 
regarding the therapeutic deployment of CFC-based CBS.
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