61 research outputs found

    Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study.

    Get PDF
    OBJECTIVE: Meta-analyses of cross-sectional studies confirm an increase in circulating inflammatory markers during acute psychosis. Longitudinal studies are scarce but are needed to understand whether elevated inflammatory markers are a cause or consequence of illness. We report a longitudinal study of serum C-reactive protein (CRP) in adolescence and subsequent risk of schizophrenia and related psychoses in adulthood in the Northern Finland Birth Cohort 1986. METHOD: Serum high-sensitivity CRP was measured at age 15/16 years in 6362 participants. ICD-10 diagnoses of schizophrenia and related psychoses were obtained from centralised hospital inpatient and outpatient registers up to age 27 years. Logistic regression calculated odds ratios (ORs) for psychotic outcomes associated with baseline CRP levels analysed as both continuous and categorical variables using American Heart Association criteria. Age, sex, body mass index, maternal education, smoking, and alcohol use were included as potential confounders. RESULTS: By age 27years, 88 cases of non-affective psychosis (1.38%), of which 22 were schizophrenia (0.35%), were identified. Adolescent CRP was associated with subsequent schizophrenia. The adjusted OR for schizophrenia by age 27yearsfor each standard deviation (SD) increase in CRP levels at age 15/16yearswas 1.25 (95% CI, 1.07-1.46), which was consistent with a linear, dose-response relationship (P-value for quadratic term 0.23). Using CRP as a categorical variable, those with high (>3mg/L) compared with low (<1mg/L) CRP levels at baseline were more likely to develop schizophrenia; adjusted OR 4.25 (95% CI, 1.30-13.93). There was some indication that higher CRP was associated with earlier onset of schizophrenia (rs=-0.40; P=0.07). CONCLUSIONS: A longitudinal association between adolescent CRP levels and adult schizophrenia diagnosis indicates a potentially important role of inflammation in the pathogenesis of the illness, although the findings, based on a small number of cases, need to be interpreted with caution and require replication in other samples.Dr. Khandaker is supported by an Intermediate Clinical Fellowship from the Wellcome Trust (201486/Z/16/Z) and a Clinical Lecturer Starter Grant from the Academy of Medical Sciences, UK (grant no. 80354). Prof. Jones acknowledges grant support from the Wellcome Trust (095844/Z/11/Z & 088869/Z/09/Z) and NIHR (RP-PG-0606-1335). Prof. Veijola was supported by the Academy of Finland (grants no. 124257, 212828, 214273). Prof. Mäki has been supported by the Signe and Ane Gyllenberg Foundation, Finland. Prof. Miettunen was supported by the Academy of Finland (grant no. 268336). Dr. Stochl was funded by the Medical Research Council (MR/K006665/1) and the NIHR Collaboration for Leadership in Applied Health Research & Care (CLAHRC) East of England.This is the final version of the article from Elsevier via https://doi.org/10.1016/j.bbi.2016.09.00

    Volcanic dust veils from sixth century tree-ring isotopes linked to reduced irradiance, primary production and human health

    Get PDF
    The large volcanic eruptions of AD 536 and 540 led to climate cooling and contributed to hardships of Late Antiquity societies throughout Eurasia, and triggered a major environmental event in the historical Roman Empire. Our set of stable carbon isotope records from subfossil tree rings demonstrates a strong negative excursion in AD 536 and 541-544. Modern data from these sites show that carbon isotope variations are driven by solar radiation. A model based on sixth century isotopes reconstruct an irradiance anomaly for AD 536 and 541-544 of nearly three standard deviations below the mean value based on modern data. This anomaly can be explained by a volcanic dust veil reducing solar radiation and thus primary production threatening food security over a multitude of years. We offer a hypothesis that persistently low irradiance contributed to remarkably simultaneous outbreaks of famine and Justinianic plague in the eastern Roman Empire with adverse effects on crop production and photosynthesis of the vitamin D in human skin and thus, collectively, human health. Our results provide a hitherto unstudied proxy for exploring the mechanisms of 'volcanic summers' to demonstrate the post-eruption deficiencies in sunlight and to explain the human consequences during such calamity years

    Source apportionment of particle number size distribution in urban background and traffic stations in four European cities

    Get PDF
    Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic – mode diameter between 13 and 37 nm, and Urban – mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic - mode diameter between 13 and 37 nm, and Urban - mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.Peer reviewe

    Ultrafine particles and PM2.5 in the air of cities around the world : Are they representative of each other?

    Get PDF
    Can mitigating only particle mass, as the existing air quality measures do, ultimately lead to reduction in ultrafine particles (UFP)? The aim of this study was to provide a broader urban perspective on the relationship between UFP, measured in terms of particle number concentration (PNC) and PM2.5 (mass concentration of particles with aerodynamic diameter 1 for roadside sites and <1 for urban background sites with lower values for more polluted cities. The Pearson's r ranged from 0.09 to 0.64 for the log-transformed data, indicating generally poor linear correlation between PNC and PM2.5. Therefore, PNC and PM2.5 measurements are not representative of each other; and regulating PM2.5 does little to reduce PNC. This highlights the need to establish regulatory approaches and control measures to address the impacts of elevated UFP concentrations, especially in urban areas, considering their potential health risks.Peer reviewe

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch programme is gratefully acknowledged for initiating and coordinating this study and for supporting this publication. We acknowledge the following projects for supporting the analysis contained in this article: Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1; Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein. This project has received funding from the European Commission’s Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project). European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Estonian Research Council (project PRG714); Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (KKOBS, project 2014-2020.4.01.20-0281). European network for observing our changing planet project (ERAPLANET, grant agreement no. 689443) under the European Union’s Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395). Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus. INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to data used in our analysis: A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Agenzia Regionale per la Protezione dell’Ambiente della Campania (ARPAC); Air Quality and Climate Change, Parks and Environment (MetroVancouver, Government of British Columbia); Air Quality Monitoring & Reporting, Nova Scotia Environment (Government of Nova Scotia); Air Quality Monitoring Network (SIMAT) and Emission Inventory, Mexico City Environment Secretariat (SEDEMA); Airparif (owner & provider of the Paris air pollution data); ARPA Lazio, Italy; ARPA Lombardia, Italy; Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de- France AIRPARIF / Atmo-France; Bavarian Environment Agency, Germany; Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, Germany; California Air Resources Board; Central Pollution Control Board (CPCB), India; CETESB: Companhia Ambiental do Estado de S˜ao Paulo, Brazil. China National Environmental Monitoring Centre; Chandigarh Pollution Control Committee (CPCC), India. DCMR Rijnmond Environmental Service, the Netherlands. Department of Labour Inspection, Cyprus; Department of Natural Resources Management and Environmental Protection of Moscow. Environment and Climate Change Canada; Environmental Monitoring and Science Division Alberta Environment and Parks (Government of Alberta); Environmental Protection Authority Victoria (Melbourne, Victoria, Australia); Estonian Environmental Research Centre (EERC); Estonian University of Life Sciences, SMEAR Estonia; European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Finnish Meteorological Institute; Helsinki Region Environmental Services Authority; Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government; Madrid Municipality; Met Office Integrated Data Archive System (MIDAS); Meteorological Service of Canada; Minist`ere de l’Environnement et de la Lutte contre les changements climatiques (Gouvernement du Qu´ebec); Ministry of Environment and Energy, Greece; Ministry of the Environment (Chile) and National Weather Service (DMC); Moscow State Budgetary Environmental Institution MOSECOMONITORING. Municipal Department of the Environment SMAC, Brazil; Municipality of Madrid public open data service; National institute of environmental research, Korea; National Meteorology and Hydrology Service (SENAMHI), Peru; New York State Department of Environmental Conservation; NSW Department of Planning, Industry and Environment; Ontario Ministry of the Environment, Conservation and Parks, Canada; Public Health Service of Amsterdam (GGD), the Netherlands. Punjab Pollution Control Board (PPCB), India. R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal); Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics, Russia; Russian Foundation for Basic Research (project 20–05–00254) SAFAR-IITM-MoES, India; S˜ao Paulo State Environmental Protection Agency, CETESB; Secretaria de Ambiente, DMQ, Ecuador; Secretaría Distrital de Ambiente, Bogot´a, Colombia. Secretaria Municipal de Meio Ambiente Rio de Janeiro; Mexico City Atmospheric Monitoring System (SIMAT); Mexico City Secretariat of Environment, Secretaría del Medio Ambiente (SEDEMA); SLB-analys, Sweden; SMEAR Estonia station and Estonian University of Life Sciences (EULS); SMEAR stations data and Finnish Center of Excellence; South African Weather Service and Department of Environment, Forestry and Fisheries through SAAQIS; Spanish Ministry for the Ecological Transition and the Demographic Challenge (MITECO); University of Helsinki, Finland; University of Tartu, Tahkuse air monitoring station; Weather Station of the Institute of Astronomy, Geophysics and Atmospheric Science of the University of S˜ao Paulo; West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog

    The association between atopic disorders and depression:the Northern Finland 1966 Birth Cohort Study

    No full text
    Abstract An excess of atopic allergies has been found in patients with depression, and conversely, increased amounts of depressive symptoms have been reported in patients with atopic disorders. Thus far, however, the findings have mainly been based on clinical samples. In this thesis, the association between atopic disorders and depression was investigated at epidemiological level by using data from the Northern Finland 1966 Birth Cohort. An unselected cohort of 12058 liveborn children was followed prospectively from prenatal stages until 1997. During the 31-year follow-up, 6025 cohort members underwent skin prick tests. Data on lifetime depression diagnoses and atopic conditions were obtained from postal questionnaires and Finnish Hospital Discharge Registers, and the severity of the depressive symptoms was assessed with Hopkins Symptom Checklist-25. Information on the family histories of the atopic disorders was obtained from questionnaires of the 31-year follow-up. Females with positive skin prick test responses and self-reported histories of allergic symptoms exhibited a 2.7-fold probability of developing lifetime depression. The corresponding probability increased in line with the increased severity of depressive symptoms in atopic but not in non-atopic females, ranging from 3.0 to 4.7-fold. Among males, the atopy-depression association was seen only in the highest depression scores, the odds ratio being up to 6.3-fold. While the most severe, hospital-treated manifestations of both disorders were considered, atopic disorders increased the risk of depression 3-fold independently of the subject's gender and sociodemographic characteristics. When investigating the effect of familial atopy on a child's depression, maternal atopy increased the probability of lifetime depression nearly 2-fold in females, and over 4-fold, when a female cohort member's own atopy was also present. At epidemiological level, the presence of atopic conditions seemed to increase the probability of lifetime depression especially in females. Since both atopic disorders and depression are illnesses of major public health importance in Western countries, also the co-morbidity between these disorders should be seriously taken into account in clinical practice. Further investigations are called for in evaluating whether this association is specific to atopic disorders, since increased risks of depression have been noted in connection with many other physical diseases as well

    Multimorbidity and achievement of treatment goals among patients with type 2 diabetes:a primary care, real-world study

    No full text
    Abstract Background: Type 2 diabetes (T2D), with its prevalence and disability-causing nature, is a challenge for primary health care. Most patients with T2D are multimorbid, i.e. have one or more long-term diseases in addition to T2D. Multimorbidity may play a role in the achievement of T2D treatment targets, but is still not fully understood. The aims of the present cross-sectional, register-based study were to evaluate the prevalence and the most common patterns of multimorbidity among patients with T2D; and to study the potential associations between multimorbidity and treatment goal achievement, including measurements of glycosylated haemoglobin A1c (HbA1c), low-density lipoprotein (LDL) and systolic blood pressure (sBP). Methods: The study population consisted of 4545 primary care patients who received a T2D diagnosis between January 2011 and July 2019 in Rovaniemi Health Centre, Finland. Data on seven long-term concordant (T2D-related) diseases, eight long-term discordant (non-T2D-related) diseases, potential confounders (age, sex, body mass index, prescribed medication), and the outcomes studied were collected from patients’ records. Logistic regression models with odds ratios (ORs) and 95 % confidence intervals (CIs) were assessed to determine the associations between multimorbidity and the achievement of treatment targets. Results: Altogether, 93 % of the patients had one or more diseases in addition to T2D, i.e. were considered multimorbid. Furthermore, 21 % had only concordant disease(s) (Concordant subgroup), 8 % had only discordant disease(s) (Discordant subgroup) and 64 % had both (Concordant and discordant subgroup). As either single diseases or in combination with others, hypertension, musculoskeletal (MS) disease and hyperlipidaemia were the most prevalent multimorbidity patterns. Being multimorbid in general (OR 1.32, CI 1.01–1.70) and belonging to the Concordant (OR 1.45, CI 1.08–1.95) and Concordant and discordant (OR 1.31, CI 1.00–1.72) subgroups was associated with achievement of the HbA1c treatment target. Belonging to the Concordant and discordant subgroup was related to meeting the LDL treatment target (OR 1.31, CI 1.00–1.72). Conclusions: Multimorbidity, including cardiovascular risk and the musculoskeletal disease burden, was extremely prevalent among the T2D patients who consulted primary health care. Primary care clinicians should survey the possible co-existence of long-term diseases among T2D patients to help maintain adequate treatment of T2D

    High prevalence of skin diseases and need for treatment in a middle-aged population. A Northern Finland Birth Cohort 1966 study.

    No full text
    To determine the overall prevalence of skin diseases a whole-body skin examination was performed for 1,932 members (46-years of age) of the Northern Finland Birth Cohort (NFBC 1966), which is a comprehensive longitudinal research program (N = 12,058). A high prevalence of all skin diseases needing treatment was found (N = 1,158). Half of the cases of skin findings were evaluated to be serious enough to require diagnostic evaluation, treatment or follow-up either in a general health care, occupational health care or a secondary care setting. The remaining half were thought to be slight and self-treatment was advised. Males (70%) had more skin diseases needing treatment than females (52%) (P<0.001). The most common skin finding was a benign skin tumor, which was found in every cohort member. Skin infections (44%), eczemas (27%) and sebaceous gland diseases (27%) were the most common skin diseases in the cohort. Moreover, skin infections and eczemas were more commonly seen in the group with low education compared to those with high education (P<0.005). The results strengthen the postulate that skin diseases are common in an adult population
    • …
    corecore