102 research outputs found

    Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Get PDF
    The Cbl-associated protein/ponsin (CAP) is an adaptor protein that contains a so-called Sorbin homology (SoHo) domain and three Src homology 3 (SH3) domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling

    Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo

    Get PDF
    Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes

    Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases

    Get PDF
    Background: The c-Cbl-associated protein (CAP), also known as ponsin, localizes to focal adhesions and stress fibers and is involved in signaling events. Phosphorylation has been described for the other two members of the sorbin homology family, vinexin and ArgBP2, but no data exist about the putative phosphorylation of CAP. According to previous findings, CAP binds to tyrosine kinase c-Abl. However, it is not known if CAP is a substrate of c-Abl or other tyrosine kinases or if phosphorylation regulates its localization. Results: We here show that CAP is Tyr phosphorylated by and interacts with both c-Abl and c-Src. One major phosphorylation site, Tyr360, and two minor contributors Tyr326 and Tyr632 were identified as Abl phosphorylation sites, whereas Src preferentially phosphorylates Tyr326 and Tyr360. Phosphorylation of CAP was not necessary for its localization to focal adhesions and stress fibers, but Tyr326Phe substitution alters the function of CAP during cell spreading. Conclusion: This is the first demonstration of phosphorylation of CAP by any kinase. Our findings suggest that coordinated action of Src and Abl might regulate the function of CAP and reveal a functional role especially for the Src-mediated Tyr phosphorylation of CAP in cell spreading

    Statistical Permutation Test Reveals Progressive and Region-Specific Iron Accumulation in the Thalami of Children with Aspartylglucosaminuria

    Get PDF
    Aspartylglucosaminuria (AGU) is a rare lysosomal storage disorder causing developmental delay, intellectual disability, and eventual death. A distinct feature in AGU is iron accumulation within the thalamus. Our aim is to demonstrate that susceptibility-weighted images (SWI) could be used as an MRI biomarker to evaluate the response within the AGU population to newly evolving treatments. SWI from 16 patients with AGU and 16 age-matched controls were used in the analysis. Thalamic volume with an iron accumulation was identified using a permutation test. Group differences were investigated for both the complete thalamus and the iron accumulation regions. Group-wise age correlation within these volumes were assessed with analysis of variance and multivariate regression. We found a statistically significant and large difference (p-value = 0.01, Cohen’s D = 0.97) for the whole thalamus comparison and an even greater difference in the iron accumulation regions (p-value < 0.01, Cohen’s D = 3.52). Furthermore, we found strong evidence for iron accumulation as a linear function of age with R2 = 0.65 only for AGU. The statistical analysis of SWI provides tools for assessing the degree of iron accumulation. This method could be used to study the response to treatments, in that a successful treatment would be expected to result in a decline in iron accumulation

    Functional Analysis of the Ser149/Thr149 Variants of Human Aspartylglucosaminidase and Optimization of the Coding Sequence for Protein Production

    Get PDF
    Aspartylglucosaminidase (AGA) is a lysosomal hydrolase that participates in the breakdown of glycoproteins. Defects in the AGA gene result in a lysosomal storage disorder, aspartylglucosaminuria (AGU), that manifests mainly as progressive mental retardation. A number of AGU missense mutations have been identified that result in reduced AGA activity. Human variants that contain either Ser or Thr in position 149 have been described, but it is unknown if this affects AGA processing or activity. Here, we have directly compared the Ser149/Thr149 variants of AGA and show that they do not differ in terms of relative specific activity or processing. Therefore, Thr149 AGA, which is the rare variant, can be considered as a neutral or benign variant. Furthermore, we have here produced codon-optimized versions of these two variants and show that they are expressed at significantly higher levels than AGA with the natural codon-usage. Since optimal AGA expression is of vital importance for both gene therapy and enzyme replacement, our data suggest that use of codon-optimized AGA may be beneficial for these therapy options

    Identification of Small Molecule Compounds for Pharmacological Chaperone Therapy of Aspartylglucosaminuria

    Get PDF
    Aspartylglucosaminuria (AGU) is a lysosomal storage disorder that is caused by genetic deficiency of the enzyme aspartylglucosaminidase (AGA) which is involved in glycoprotein degradation. AGU is a progressive disorder that results in severe mental retardation in early adulthood. No curative therapy is currently available for AGU. We have here characterized the consequences of a novel AGU mutation that results in Thr122Lys exchange in AGA, and compared this mutant form to one carrying the worldwide most common AGU mutation, AGU-Fin. We show that T122K mutated AGA is expressed in normal amounts and localized in lysosomes, but exhibits low AGA activity due to impaired processing of the precursor molecule into subunits. Coexpression of T122K with wildtype AGA results in processing of the precursor into subunits, implicating that the mutation causes a local misfolding that prevents the precursor from becoming processed. Similar data were obtained for the AGU-Fin mutant polypeptide. We have here also identified small chemical compounds that function as chemical or pharmacological chaperones for the mutant AGA. Treatment of patient fibroblasts with these compounds results in increased AGA activity and processing, implicating that these substances may be suitable for chaperone mediated therapy for AGU

    Detection of Aspartylglucosaminuria Patients from Magnetic Resonance Images by a Machine-Learning-Based Approach

    Get PDF
    Magnetic resonance (MR) imaging data can be used to develop computer-assisted diagnostic tools for neurodegenerative diseases such as aspartylglucosaminuria (AGU) and other lysosomal storage disorders. MR images contain features that are suitable for the classification and differentiation of affected individuals from healthy persons. Here, comparisons were made between MRI features extracted from different types of magnetic resonance images. Random forest classifiers were trained to classify AGU patients (n = 22) and healthy controls (n = 24) using volumetric features extracted from T1-weighted MR images, the zone variance of gray level size zone matrix (GLSZM) calculated from magnitude susceptibility-weighted MR images, and the caudate–thalamus intensity ratio computed from T2-weighted MR images. The leave-one-out cross-validation and area under the receiver operating characteristic curve were used to compare different models. The left–right-averaged, normalized volumes of the 25 nuclei of the thalamus and the zone variance of the thalamus demonstrated equal and excellent performance as classifier features for binary organization between AGU patients and healthy controls. Our findings show that texture-based features of susceptibility-weighted images and thalamic volumes can differentiate AGU patients from healthy controls with a very low error rate

    Succinic semialdehyde dehydrogenase deficiency: in vitro and in silico characterization of a novel pathogenic missense variant and analysis of the mutational spectrum of ALDH5A1

    Get PDF
    Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter \u3b3-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including \u3b3-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T &gt; C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots

    The Finnish genetic heritage in 2022 - from diagnosis to translational research

    Get PDF
    Publisher Copyright: © 2022. Published by The Company of Biologists Ltd.Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype-phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.Peer reviewe
    • …
    corecore