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Abstract: Magnetic resonance (MR) imaging data can be used to develop computer-assisted diagnos-
tic tools for neurodegenerative diseases such as aspartylglucosaminuria (AGU) and other lysosomal
storage disorders. MR images contain features that are suitable for the classification and differen-
tiation of affected individuals from healthy persons. Here, comparisons were made between MRI
features extracted from different types of magnetic resonance images. Random forest classifiers were
trained to classify AGU patients (n = 22) and healthy controls (n = 24) using volumetric features
extracted from T1-weighted MR images, the zone variance of gray level size zone matrix (GLSZM)
calculated from magnitude susceptibility-weighted MR images, and the caudate–thalamus intensity
ratio computed from T2-weighted MR images. The leave-one-out cross-validation and area under
the receiver operating characteristic curve were used to compare different models. The left–right-
averaged, normalized volumes of the 25 nuclei of the thalamus and the zone variance of the thalamus
demonstrated equal and excellent performance as classifier features for binary organization between
AGU patients and healthy controls. Our findings show that texture-based features of susceptibility-
weighted images and thalamic volumes can differentiate AGU patients from healthy controls with
a very low error rate.

Keywords: magnetic resonance imaging; aspartylglucosaminuria; lysosomal storage disorders;
classification; supervised learning; thalamus

1. Introduction

Aspartylglucosaminuria (AGU, OMIM 208400) is a rare lysosomal storage disorder
caused by the deficiency of aspartylglucosaminidase (AGA), a hydrolase involved in
lysosomal degradation of N-glycosylated proteins (reviewed in [1,2]). A progressive
learning disability is observed in AGU patients from childhood onward. In addition, AGU
patients manifest with recurrent infections, connective tissue and skeletal abnormalities,
and behavioral problems. A fraction of AGU patients also has epilepsy. Although born
seemingly normal, young adult AGU patients are severely handicapped with intellectual
disabilities and require help to master daily life. Most AGU patients are located in Finland,
but recently, increasing numbers of non-Finnish patients have been diagnosed. Because
AGU is very rare outside Finland, the diagnosis of non-Finnish patients is often delayed.

Although no approved therapies for AGU are available, preclinical research in gene
therapy and pharmacological chaperones has been carried out in recent years [3,4]. There-
fore, it is increasingly important to identify patients who would benefit from therapies that
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are likely to be available within a few years. For this, novel diagnostic means based on
radiological imaging approaches would be desirable.

AGU is normally diagnosed by either a direct genetic analysis of the AGA gene or the
presence of aspartylglucosamine in a urine oligosaccharide screening, which is followed by
genetic confirmation. The latter is the most common way of diagnosing AGU in Finland,
and diagnosis based on MRI findings is rare. However, a brain MRI may have already
been performed for many patients due to developmental delay or other indications before
confirmation of an AGU diagnosis by genetic testing. As thalamic changes typical for AGU
are also observed in young AGU patients [5–8], pre-existing images could be used to obtain
the first diagnostic signs for an AGU diagnosis, especially with the help of a suitable means
for automated image analysis. The availability of MR imaging has generally increased
in many countries during recent years, and the short imaging sequences that have been
developed decrease the need for anesthesia in special groups and small children. Therefore,
MRI may provide an attractive alternative for the diagnosis of AGU.

The accumulation of paramagnetic compounds in the thalamic nuclei of AGU pa-
tients was previously identified based on a decreased signal intensity in filtered-phase
susceptibility-weighted (SWI) MR images [5]. Furthermore, building on this finding,
Sairanen et al. [6] showed that the paramagnetic compound accumulation in AGU-affected
thalami strongly correlated with the patient’s age and the degree of disease progression.
Neither study detected paramagnetic compound accumulation in the control group [5,6].
It should be noted that, depending on the handedness of a magnetic resonance imaging
scanner, paramagnetic compounds appear either brighter (left-handed scanner) or darker
(right-handed scanner) in a filtered-phase SWI [5]. In magnitude SWI (left-handed scan-
ner), the accumulation appears as a decreased signal intensity [6]. The signal intensity
decrease has also been detected in the thalami of AGU patients in T2-weighted images. The
decrease was reported to be more pronounced in the pulvinar nuclei of the thalamus [7,8].
Similar MRI findings have also been reported in other lysosomal storage diseases. In
more than 40 classified lysosomal storage diseases, some degree of decreased T2 signal has
been reported [9]. The signal changes are thought to be caused by excessive metabolite
accumulation that increases the viscosity, leading to T1 and T2 shortening [9].

AGU is also known to have a diminishing effect on the volume of the thalamus [10].
Tokola et al. [10] showed that the thalamic volume of a 9.9-year-old boy with AGU was
28.8% smaller than the thalamic volume of his dizygotic, healthy twin brother. To pave
the way for computer-assisted diagnostic tools that automatically analyze MR images and
differentiate individuals with AGU, and possibly other lysosomal storage disorders, from
the healthy population, it is essential to first study which imaging sequences and features
are the most robust for a simple binary classification. The development of such tools is
important because human experts may miss the diagnosis of rare diseases in populations
with low incidences. The previous literature on AGU was screened for MRI findings and
suitable features for which statistically significant differences were observed between AGU
patients and healthy controls in quantitative analyses. Three findings, i.e., signal changes
in SWI and T2-weighted MR images and reduced thalamic volume, constitute the features
used here for a machine-learning-based classification.

Previous findings on applying machine-learning principles to medical images of
individuals affected with lysosomal storage diseases are scarce. Sharma et al. [11] used
a machine-learning model based on stereological and texture features in micro-MRI images
to discern between patients suffering from another lysosomal storage disease, type 1 Gaucher
disease, and healthy controls, with a maximum accuracy of 73% and 0.79 area under the
curve (AUC). The application of data mining and machine learning to search for new
inhibitors and chaperones to generally treat lysosomal storage diseases was suggested by
Klein et al. [12]. We provide a machine-learning-based method capable of distinguishing
AGU patients from healthy controls based on analysis of specific features in MR images.
Previously, similar features were used in supervised learning approaches to differentiate
cognitive disorders [13] and identify early cognitive impairment [14].
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2. Materials and Methods
2.1. Subjects

In total, the data of 46 unique subjects were used for the analyses in this study. The
dataset consisted of 22 patients with an AGU diagnosis and 24 healthy volunteers as
controls. Table 1 shows further details (sex and age) of the subjects, sorted by image type.
Written informed consent was obtained from the parents of the subjects.

Table 1. Patient and control numbers, sex, and mean ages with standard deviation.

MR Image Type Patient Number Control Number Mean Age Patient (years) Mean Age Control (years)

T1
12 male 16 male 11.0 ± 3.4 10.7 ± 2.4

10 female 8 female 10.1 ± 2.9 11.0 ± 2.1
22 total 24 total 10.6 ± 3.1 11.2 ± 3.0

T2
12 5 11.0 ± 3.4 11.8 ± 2.0
7

19
9

14
10.0 ± 3.3
12.8 ± 3.3

13.7 ± 2.9
13.0 ± 2.7

SWI

10 7 11.0 ± 3.4 8.7 ± 1.5

6 9 10.1 ± 3.4 12.1 ± 2.8

16 16 10.7 ± 3.3 10.8 ± 3.0

2.2. MRI Sequence Parameters

The susceptibility-weighted images used in this study were acquired using a 3T
MAGNETOM Skyra (Siemens, Erlangen, Germany) scanner. The imaging parameters
of the SWI sequence were a TR of 27 ms, TE of 20 ms, flip angle of 15◦, slice thickness
of 2.0 mm, and in-plane resolution of 0.86 × 0.86 mm, with a matrix size of 256 × 232.
Some of these images were previously used in Sairanen et al. [6] and Tokola et al. [5]. SWI
acquisition was executed on a left-handed MR scanner [6].

The T1- and T2-weighted images were acquired using a 3T MAGNETOM Skyra
(Siemens, Erlangen, Germany). T2 axial series (TR of 4000 ms, TE of 82 ms, slice thickness
of 3 mm, in-plane resolution of 0.4978 mm × 0.4978 mm, flip angle of 150◦, and matrix
of 448 × 448) and T1 3D-MPRAGE series (TR 2000 ms, TE 2.74 ms, slice thickness 1 mm,
in-plane resolution 1 × 1 mm, flip angle 10◦, and matrix size 256 × 256) were acquired.
This material was previously used by Tokola et al. [8].

2.3. Image Segmentation and Feature Extraction

For each subject, the T1-weighted anatomical images were preprocessed and volumetri-
cally segmented using the FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) (accessed on
7 September 2022) cortical reconstruction process recon-all [15–21]. Thereafter, the thalamus
of each subject was further segmented into 25 separate nuclei (left and right) using the
FreeSurfer tool segmentThalamicNuclei.sh [22]. The thalamic nuclei segmentation tool
utilizes a probabilistic atlas, built using ex vivo MRI brain scans and histological data, to
produce parcellation of the thalamus into 25 thalamic nuclei [22]. The estimated volumes of
the nuclei, obtained as the tool’s output, were left–right-averaged to obtain the 25 volumes
used as features for the classification. All volumetric measures used to train the classifiers
were normalized by dividing them by the total estimated intracranial volume. The total
intracranial volumes were estimated using the recon-all pipeline [15–21]. The T2-weighted
images and SWI were registered with T1-weighted images using 3DSlicer (4.8.0), a rigid
transformation model, and a mutual information criterion [23]. The registration was con-
ducted to mitigate the possible effects of head translation and rotation between the imaging
sequences. The whole thalamus volume estimated by the nucleic segmentation tool and
the thalamus volume output provided by the subcortical segmentation pipeline of the
Freesurfer (also referred to as aseg segmentation) were used to create two feature matri-
ces to inspect and contrast the robustness of the nucleic-volume-based classification. In

https://surfer.nmr.mgh.harvard.edu/
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summary, three feature matrices were obtained: the first contained 25 left–right-averaged
nucleic volumes, the second contained the whole volume estimated by the nucleic seg-
mentation tool, and the third contained the whole volume estimated by the subcortical
segmentation pipeline. The discrete segmentation volumes in the FreeSurfer voxel space
for each subject output by the thalamus segmentation tool were binarized into masks that
were then used to extract the thalamus from the SWI. The PyRadiomics package [24] was
used to extract radiomics features from the SWI of the thalami. The gray level size zone
matrix zone variance (GLSZM zone variance or zone variance) was chosen as the radiomics
feature used for the classification. The gray level size zone matrix [25] is a statistical matrix
used for texture classification. In a gray level size zone matrix, P(i, j), the (i, j)th element
of the matrix is the number of connected voxels of the gray level intensity, i, and the size,
j [26]. Voxels of the same gray level intensity are considered connected in 3D if they are
connected, i.e., the distance between the voxels according to the infinity norm is 1 [26].
Zone variance (ZV) is then calculated by:

ZV =
Ng

∑
i=1

Ns

∑
j=1

p(i, j)(j − µ)2

where P(i, j) is the normalized gray level size zone matrix defined as p(i, j) = P(i,j)
Nz

, Ns is
the number of discreet zone sizes in the image, Ng is the number of discreet intensity values

in the image, and µ = ∑
Ng
i=1 ∑Ns

j=1 p(i, j)j [26]. Default gray level discretization was used.
The caudate nucleus segmentation output by the recon-all FreeSurfer pipeline was

used to extract the caudate nuclei of each subject from the T2-weighted MR images. The
average intensity value was calculated after eroding the mask, which was performed to
avoid including high-intensity cerebrospinal fluid signals from the borders due to a partial
volume effect and possible inaccuracies in the segmentation and registration processes. For
each subject, the average intensity of the caudate nuclei was then divided by the average
intensity of the thalamus, extracted from the T2-weighted images with an eroded binary
mask. This calculation of caudate–thalamus mean intensity ratios yielded another feature
matrix used for the classification.

Figure 1 shows example data and the segmentation masks used to extract the
classification features.

2.4. Random Forest Classifier

To test and compare the robustness of the extracted features for the classification
between healthy controls and AGU patients, the MATLAB (The MathWorks Inc.:, Natick,
MA, USA) random forest classifier function TreeBagger was used to grow bootstrap-
aggregated decision trees. The decision trees were grown using five separate feature
matrices: one containing 25 left–right-averaged, normalized nucleic volumes of the tha-
lami; a second containing total normalized thalamic volumes estimated by the thalamus
segmentation tool; a third containing the whole normalized thalamic volumes estimated
by the recon-all pipeline; a fourth containing the zone variances of the thalami from SWI;
and a fifth containing the caudate–thalamus mean intensity ratios from the T2-weighted
images. Table 2 shows the number of data points used per each model. Table 3 shows
the TreeBagger function parameters that were used. The cost was chosen so that a false
negative was five times more costly than a false positive because missing the diagnosis of
a patient suffering from a serious illness is usually a graver mistake.
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Due to the limited available data, the classifiers were evaluated using a leave-one-out
cross-validation technique [27]. Decision trees were grown in a leave-one-out fashion,
where one subject was left out from the training, and the resulting model was used to
classify the left-out subject. This process was repeated so that each subject was left out of
the training and then classified. The performance of the classifiers was evaluated using the
area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity
as metrics.
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Figure 1. MR images of an AGU patient (A–C) and an age- and sex-matched healthy control (D–F).
(A,D) T1-weighted image with segmented thalamic nuclei. (B,E) Susceptibility weighted image with
the outlines of the segmented thalamus. (C,F) T2-weighted image with the outlines of the segmented
thalamus and the caudate.

Table 2. Details of the models and number of data points used for the training.

Model MR Image Type Features Patients Controls Total Subjects

1 T1 Nucleic Volumes 22 24 46
2 T1 Whole Volume 22 24 46
3 T1 aseg Volume 22 24 46
4 SWI Zone Variance 16 16 32
5 T2 Caudate-Thalamus Ratio 19 14 33
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Table 3. The MATLAB TreeBagger classifier parameters used.

Title 1 Title 3

NumTreees 4000
OOBPrediction on

Method classification
Options statset(‘UseParallel’,true)

cost [0 1; 5 0]

3. Results

Caudate–thalamus intensity ratios in T2-weighted images were calculated as previ-
ously described and plotted against the nucleic volume sum and age. Figure 2 shows
the relationship between the total thalamus volume (as calculated by segmentThalamic-
Nuclei.sh) and the caudate–thalamus intensity ratio in T2 images. AGU patients were
more distinctly separated by the nucleic volume sum of the y-axis than the intensity ratio
of the x-axis. AGU patients (M = 1.29, SD = 0.06) and controls (M = 1.21, SD = 0.03) ex-
hibited a statistically significant difference in the caudate–thalamus intensity ratio in the
T2-weighted images with p < 0.001, using an alpha level of 0.05. The random forest classifier
resulted in an AUC = 0.8008 when using the settings described in Table 3 and the caudate-
thalamus intensity ratios calculated from the T2-weighted images as classification features.
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Figure 2. Normalized total thalamus volume (as sum of thalamus nucleic volumes) plotted against
caudate-thalamus intensity ratio in the T2-weighted images. The patients and the controls were less
separated by the x-axis than the y-axis.

To investigate the effects of age on the caudate-thalamus intensity ratio classifier
feature, the intensity ratio was plotted against the subject’s age. Figure 3 shows a scatter
plot of the caudate-thalamus intensity ratio in the T2-weighted images and the subject’s age
in years. AGU patients and controls showed differing intensity ratio values. No statistically
significant correlation was found between age and the caudate-thalamus intensity ratio for
either subject group at the significance level of 0.05.
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Figure 3. T2-weighted caudate-thalamus intensity ratio plotted against the age in years. The y-axis
shows the caudate-thalamus intensity ratio in the T2-weighted images, whereas the x-axis depicts the
age in years.

To compare and visually evaluate the performance of the three volume-based classi-
fiers, receiving operating characteristics (ROC) curves were calculated and plotted. Figure 4
shows the ROC curves for the three volume-based random forest classifiers. The per-
formance of the classifier Model 1 from Table 2 is shown in green, wherein 25 left-right
averaged, normalized thalamic nucleic volumes were used as features. The area under the
curve (AUC) was 0.9792, signifying that the classifier was robust in its performance. In
Figure 4, the ROC curve of the classifier Model 2 from Table 2, where the sum of the nucleic
volumes was used as the classification feature, is shown in blue. With an AUC of 0.9735, the
performance of this classifier was also very robust. Models 1 and 2 had equal accuracies,
sensitivities, and specificities, and their performance could be considered equal. The ROC
of the volume-based classifier with the lowest performance, Model 3 from Table 2 (AUC
0.9622), is shown in red in Figure 4. It used normalized thalamic volume, as estimated by
the subcortical segmentation pipeline of the Freesurfer (aseg), as the classification feature.
Its performance was slightly lower than that of Models 1 and 2.

To visually inspect and compare the grouping of the data points, the zone variances
and the sum of thalamic nucleic volumes were plotted as a scatter plot. Figure 5 displays
the relationship between the thalamus nucleic volume sum of the subjects (x-axis) and the
zone variance (y-axis). The data points of the control group are more spread out, whereas
the data points of the AGU patients are clustered closer together. The two subject groups are
almost completely spatially separated at both the x- and y-axes, suggesting the robustness
of the zone variance parameter in the classification.
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Figure 4. Receiver operating characteristic curves of the three classifiers for a positive diagnosis,
predicted vs. actual. Green: the classifier using 25 left–right-averaged normalized thalamic nucleic
volumes (Model 1). Blue: the classifier using normalized nucleic volume sum (Model 2). Red: the
classifier using total normalized thalamic volume as estimated by the subcortical segmentation
pipeline (Model 3).
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The effect of age on the zone variance classifier feature was further investigated.
Figure 6 shows the scatter plot of the subject’s age in years (x-axis) and the zone variance
parameter. The differences in zone variance in the two subject groups were not due to
the age of the subjects. The zone variances of AGU patients and healthy controls did not
correlate with age at the significance level of 0.05.
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Figure 6. Subjects’ zone variance plotted against the age in years. No correlation with the age of the
subject was found in either group at the significance level of 0.05.

Table 4 shows the AUCs, accuracies, sensitivities, and specificities of the trained
classifiers from Table 2. Measured according to the performance metrics of Table 4, the
zone variance of SWI was the most robust feature for classification, with 100% sensitivity.
The T2-weighted caudate-thalamus intensity ratio was the lowest-performing feature in
every metric.

Table 4. The performance metrics of the trained random forest classifiers.

Model MR Image Type Features AUC Accuracy Sensitivity Specificity

1 T1 Nucleic Volumes 0.9792 0.9348 0.9545 0.9167
2 T1 Whole Volume 0.9735 0.9348 0.9545 0.9167
3 T1 aseg Volume 0.9622 0.9333 0.9130 0.8750
4 SWI Zone Variance 0.9922 0.9688 1.0000 0.9375
5 T2 Caudate–Thalamus Ratio 0.8008 0.6667 0.8947 0.3571

4. Discussion

The robustness of the volumetric features calculated from T1-weighted images, the
zone variance calculated from susceptibility-weighted images, and the caudate–thalamus
intensity ratio in T2-weighted images were evaluated for binary classification between
patients with AGU diagnosis and healthy controls using a random forest classifier and
leave-one-out cross-validation. The areas under the receiver operating characteristic curves,
accuracies, sensitivities, and specificities were used to compare the performance of the
classifiers based on different features. Regarding the three normalized thalamic-volume-
based classifiers shown in Figure 3, the classifiers using 25 left–right-averaged, normalized
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thalamic nucleic volumes and normalized nucleic volume sums (Models 1 and 2 in Table 2,
respectively) performed slightly better than Model 3 trained classifiers with normalized
aseg volumes. Iglesias et al. [22] reported that the volumes of the thalamic nuclei estimated
by the thalamus segmentation tool are more robust for binary classification of Alzheimer’s
disease patients and healthy controls than the volumes from Freesurfer’s subcortical seg-
mentation pipeline or the nucleic volume sum. We observed a slightly better classification
performance using the normalized nucleic volumes compared with the normalized vol-
umes from Freesurfer’s subcortical segmentation pipeline. With our small sample size,
the slight improvement in classifier performance could be attributed to the randomness of
the classifier.

With an AUC of 0.9922 for Model 4, the radiomics feature zone variance of the gray
level size zone matrix calculated from the SWI, was a near-perfect classifier feature for
binary classification between diagnosed patients and healthy controls. Even though iron
accumulation in the thalamic nuclei was shown to strongly correlate and increase with age
and disease progression in AGU [6], the zone variances of the gray level size zone matrices
of the entire thalami of the subjects did not show a statistically significant correlation with
age on a significance level. This finding implies that zone variance is a robust and clinically
interesting classifier feature for subjects of all ages, at least when using the entire thalamic
volume for the calculations. The clinical implication of the robustness of the SWI zone
variance in classification is that the susceptibility-weighted imaging sequences should be
favored in diagnostic practice. The T2-weighted caudate–thalamus intensity ratio based
classifier (Model 5) was the weakest classifier, with an AUC of 0.8008. Considering this and
the works of Sairanen et al. [6] and Tokola et al. [5], SWI sequences may be more useful for
studying aspartylglucosaminuria than the T2-weighted sequences.

Potential limitations of our study are the low number of probands and patients used
for training purposes. These limitations are due to the disease’s rareness and the differences
in the MR images, which depend on the type of scanner used to obtain the images. There-
fore, attention should be paid to the MRI scanner type and the technical specifications of
the scanner when susceptibility-weighted images are analyzed, as compounds that distort
the local magnetic field appear either as hypo- or hyperintensities, depending on the manu-
facturer. Future studies with MR images of AGU patients obtained with different scanner
types but classified with our dataset will be useful to see if an improved training dataset
will be required to classify images obtained using other scanners. However, regardless
of the scanner manufacturer, the accumulated magnetic field distorting compounds are
visible in SWI.

5. Conclusions

Our study demonstrates that even in a rare systemic disease such as AGU, machine-
learning-based analyses can differentiate previously diagnosed AGU patients from healthy
controls when models are trained with simple volume and texture features calculated from
various types of magnetic resonance images. In this study, our previous MRI findings
of thalamic abnormalities were confirmed. Furthermore, these thalamic signal intensity
and volumetric abnormalities could distinguish AGU patients from controls. We could
also dissect which abnormalities in the patient images were the most effective ones for
classification. The thalamus thus plays an important role in lysosomal storage diseases.
Computer-aided analyses are useful, especially in diagnosing rare systemic diseases seldom
seen by radiologists. Larger data sets would be beneficial in creating improved machine-
learning models with a lower risk of over-fitting.
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