2,415 research outputs found

    Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms

    Get PDF
    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a “business-as-usual” emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m3 each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments

    When Forests Take Over After Land Abandonment: Dissolved Organic Matter Response in Headwater Mountain Streams

    Get PDF
    ABSTRACT: Dissolved organic matter (DOM) represents the largest pool of organic carbon in fluvial ecosystems. The majority of DOM in rivers is of terrigenous origin?making DOM composition highly dependent on vegetation cover and soil properties. While deforestation is still a worldwide anthropogenic phenomenon, current land cover change in temperate regions is often characterized by secondary succession processes following the abandonment of agricultural activities including grazing on pasturelands. This results in (secondary) forest expansion with a consequent, time-lagged transformation of soil properties. Predicting the time scale and spatial scale (i.e., location in the catchment: riparian vs. upslope areas) at which such land cover changes affect the terrestrial-aquatic carbon linkage and concomitantly alter properties of fluvial DOM as drivers of carbon cycling in freshwater ecosystems represents a new scientific challenge. In an attempt to identify potential legacy effects of land cover, i.e., reaction delays of fluvial DOM to changes in land cover, we here investigate the influence of specific current and historic (2 decade-old) land cover types on molecularly resolved fluvial DOM composition in headwater mountain streams. Our analysis is based on a scale-sensitive approach weighing in the distance of land cover (changes) to the stream and ultrahigh-resolution mass spectrometric analyses. Results identified the dominance of terrigenous DOM, with phenolic and polyphenolic sum formulae commonly associated to lignins and tannins, in all the studied streams. DOM properties mostly reflected present-day gradients of forest cover in the riparian area. In more forested catchments, DOM had on average higher molecular weight and a greater abundance of O-rich phenols and polyphenols but less aliphatics. Besides the modulation of the DOM source, our results also point to an important influence of photodegradation associated to variation in light exposition with riparian land cover in defining fluvial DOM properties. Despite expectations, we were unable to detect an effect of historic land cover on present-day DOM composition, at least at the investigated baseflow conditions, probably because of an overriding effect of current riparian vegetation.This study was funded by the Spanish Ministry of Economy and Competitiveness as part of the RIVERLANDS (Ref: BIA2012-33572) and HYDRA (Ref: BIA2015-71197) projects

    Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum

    Get PDF
    The Tibetan Plateau (TP) is the world's largest and highest plateau, comprising the earth's biggest alpine pasture system. It is sensitive to the impacts of climate change and anthropogenic pressure. Carbon cycling on the TP is influenced by glaciation and degradation of the pasture ecosystem. Dissolved organic matter (DOM) connects carbon reservoirs, following the hydrological continuum from glaciers and headwaters to lakes. Due to its complexity, DOM cycling along the aquatic continuum and the impact of land use and climate change on DOM characteristics are still not well understood. Here, we study solid phase extracted (SPE) DOM molecular characteristics using ultrahigh-resolution mass spectrometry (FT-ICR-MS) along the TP hydrological continuum from glaciers, groundwater springs, and wetlands, including pastures and alpine steppes, to the endorheic Lake Nam Co. Our study revealed that the SPE-DOM composition was largely influenced by local sources of glaciers, wetlands, and groundwater springs as well as pasture degradation. Glacial meltwater SPE-DOM contained more saturated compounds suggesting microbial sources together with aromatic compounds probably derived from aeolian deposition. In comparison, wetland and stream SPE-DOM were characterised by a higher percentage of highly unsaturated and aromatic molecular formulae. These were likely derived from inputs of vascular plants and soils. Groundwater spring SPE-DOM from degraded pastures differed from intact pasture samples. In degraded systems a strongly oxidised signature with the lowest counts of P heteroatoms, a lower ratio, and a higher aromaticity of SPE-DOM together with a high degradation index suggested a strong transformation of SPE-DOM. SPE-DOM of the endorheic lake was richer in unsaturated molecular formulae compared to the tributaries. This suggests algae and microbial sources and production in the lake. The SPE-DOM rich in aromatic and highly unsaturated formulae visible in the brackish zone of the lake shore contrasted sharply with that of the lake. Aromatic molecular formulae were strongly depleted in the lake deep water suggesting photooxidation of riverine SPE-DOM. This indicates that alpine SPE-DOM signatures are shaped by small-scale catchment properties, land degradation, and the influence of glaciers and wetlands. The close link of alpine SPE-DOM composition to landscape properties is indicative of a strong susceptibility of DOM characteristics to climatic and land use changes in High Asia

    Universal molecular structures in natural dissolved organic matter

    Get PDF
    Natural dissolved organic matter (DOM) comprises a broad range of dissolved organic molecules in aquatic systems and is among the most complex molecular mixtures known. Here we show, by comparing detailed structural fingerprints of individual molecular formulae in DOM from a set of four marine and one freshwater environments, that a major component of DOM is molecularly indistinguishable in these diverse samples. Molecular conformity was not only apparent by the co-occurrence of thousands of identical molecular formulae, but also by identical structural features of those isomers that collectively represent a molecular formula. The presence of a large pool of compounds with identical structural features in DOM is likely the result of a cascade of degradation processes or common synthetic pathways that ultimately lead to the formation of a universal background, regardless of origin and history of the organic material. This novel insight impacts our understanding of long-term turnover of DOM as the underlying mechanisms are possibly universal

    Controls of Land Use and the River Continuum Concept on Dissolved Organic Matter Composition in an Anthropogenically Disturbed Subtropical Watershed

    Get PDF
    About 250 Tg of dissolved organic carbon are annually transported from inland waters to coastal systems making rivers a critical link between terrestrial and ocean carbon pools. During transport through fluvial systems, various biogeochemical processes selectively remove or transform labile material, effectively altering the composition of dissolved organic matter (DOM) exported to the ocean. The river continuum concept (RCC) has been historically used as a model to predict the fate and quality of organic matter along a river continuum. However, the conversion of natural landscapes for urban and agricultural practices can also alter the sources and quality of DOM exported from fluvial systems, and the RCC may be significantly limited in predicting DOM quality in anthropogenically impacted watersheds. Here, we studied DOM dynamics in the Altamaha River watershed in Georgia, USA, a fluvial system where headwater streams are highly impacted by anthropogenic activities. The primary goal of this study was to quantitatively assess the importance of both the RCC and land use as environmental drivers controlling DOM composition. Land use was a stronger predictor of spatial variation (∼50%) in DOM composition defined by both excitation–emission matrix–parallel factor analysis (EEM–PARAFAC) and ultrahigh-resolution mass spectrometry. This is compared to an 8% explained variability that can be attributed to the RCC. This study highlights the importance of incorporating land use among other controls into the RCC to better predict the fate and quality of DOM exported from terrestrial to coastal systems

    Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation

    Get PDF
    Dissolved organic matter (DOM) is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity

    Molecular and Optical Properties of Tree-derived Dissolved Organic Matter in Throughfall and Stemflow From Live Oaks and Eastern Red Cedar

    Get PDF
    Studies of dissolved organic matter (DOM) transport through terrestrial aquatic systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making trees the headwaters of aquatic carbon cycling. Rainwater interacts with trees picking up tree-DOM, which is then exported from the tree in stemflow and throughfall. Stemflow denotes water flowing down the tree trunk, while throughfall is the water that drips through the leaves of the canopy. We report the concentrations, optical properties (light absorbance) and molecular signatures (ultrahigh resolution mass spectrometry) of tree-DOM in throughfall and stemflow from two tree species (live oak and eastern red cedar) with varying epiphyte cover on Skidaway Island, Savannah, Georgia, USA. Both stemflow and throughfall were enriched in DOM compared to rainwater, indicating trees were a significant source of DOM. The optical and molecular properties of tree-DOM were broadly consistent with those of DOM in other aquatic ecosystems. Stemflow was enriched in highly colored DOM compared to throughfall. Elemental formulas identified clustered the samples into three groups: oak stemflow, oak throughfall and cedar. The molecular properties of each cluster are consistent with an autochthonous aromatic-rich source associated with the trees, their epiphytes and the microhabitats they support. Elemental formulas enriched in oak stemflow were more diverse, enriched in aromatic formulas, and of higher molecular mass than for other tree-DOM classes, suggesting greater contributions from fresh and partially modified plant-derived organics. Oak throughfall was enriched in lower molecular weight, aliphatic and sugar formulas, suggesting greater contributions from foliar surfaces. While the optical properties and the majority of the elemental formulas within tree-DOM were consistent with vascular plant-derived organics, condensed aromatic formulas were also identified. As condensed aromatics are generally interpreted as deriving from partially combusted organics, some of the tree-DOM may have derived from the atmospheric deposition of thermogenic and other windblown organics. These initial findings should prove useful as future studies seek to track tree-DOM across the aquatic gradient from canopy roof, through soils and into fluvial networks

    Improved Mass Accuracy and Isotope Confirmation through Alignment of Ultrahigh-Resolution Mass Spectra of Complex Natural Mixtures

    Get PDF
    Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost

    Processes in the surface ocean regulate dissolved organic matter distributions in the deep

    Get PDF
    Marine dissolved organic matter (DOM) is a major global carbon pool, consisting of thousands of compounds with distinct lifetimes. While marine DOM persists for millennia, its molecular and isotopic composition imply that it is dynamic on shorter timescales. To determine the extent to which DOM deviates from conservative water mass mixing, we conducted a two-endmember mixing analysis on dissolved organic carbon (DOC) concentration and DOM molecular composition in the Atlantic and Pacific. Endmembers were the deep water masses near their formation sites. For DOM composition, we considered 6118 molecular formulae (MF) identified via Fourier-transform ion cyclotron resonance mass spectrometry in solid-phase extracts (SPE) of 837 samples. Bulk DOC and SPE-DOC concentrations behaved conservatively in both basins and ≥70% of the MF (14–20 μM SPE-DOC) mixed conservatively. However, a small fraction (10%–20%) of the MF (<3 μM SPE-DOC) were added or removed during mixing. These MF were more reduced and oxidized, respectively, than the conservative fraction. There were also MF absent from the endmembers; these accounted for ≤1 μM of SPE-DOC and positively correlated with DOM lability. Based on their distribution across the two basins, we conclude that the conserved MF are formed in the surface subtropical ocean and modified in overturning areas. In the deep ocean, however, these MF are solely controlled by mixing. This finding contrasts with the current paradigm of slow, continuous degradation of recalcitrant DOM in the deep ocean. Our analysis illustrates the importance of the surface ocean in controlling DOM cycling in the deep
    corecore