203 research outputs found

    Clinical and genetic studies of ETV6/ABL1-positive chronic myeloid leukaemia in blast crisis treated with imatinib mesylate.

    Get PDF
    Most chronic myeloid leukaemia (CML) patients are genetically characterized by the t(9;22)(q34;q11), generating the BCR/ABL1 fusion gene. However, a few CML patients with rearrangements of 9q34 and 12p13, leading to ETV6/ABL1 chimaeras, have also been reported. Here we describe the clinical and genetic response to imatinib mesylate treatment of an ETV6/ABL1-positive CML patient diagnosed in blast crisis (BC). A chronic phase was achieved after acute myeloid leukaemia induction therapy. Then, treatment with imatinib mesylate (600 mg/d) was initiated and the effect was assessed clinically as well as genetically, including by repeated interphase fluorescence in situ hybridization studies. Until d 71 of imatinib mesylate therapy, stable improvements in the clinical and laboratory features were noted, and the frequency of ABL1-rearranged peripheral blood cells decreased from 56% to 11%. At d 92, an additional t(12;13)(p12;q13), with the 12p breakpoint proximal to ETV6, was found. The patient relapsed into BC 126 d after the start of the imatinib mesylate treatment and succumbed to the disease shortly afterwards. No mutations in the tyrosine kinase domain of ABL1 of the ETV6/ABL1 fusion were identified in the second BC. However, whereas the ETV6/ABL1 expression was seemingly the same at diagnosis and at second BC, the expression of ETV6 was markedly lower at the second BC. This decreased expression of wild-type ETV6 may have been a contributory factor for the relapse

    Whole-exome sequencing of pediatric acute lymphoblastic leukemia.

    Get PDF
    Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL.Leukemia advance online publication, 18 November 2011; doi:10.1038/leu.2011.333

    The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia.

    Get PDF
    High hyperdiploid (51-67 chromosomes) acute lymphoblastic leukemia (ALL) is one of the most common childhood malignancies, comprising 30% of all pediatric B cell-precursor ALL. Its characteristic genetic feature is the nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18 and 21, with individual trisomies or tetrasomies being seen in over 75% of cases, but the pathogenesis remains poorly understood. We performed whole-genome sequencing (WGS) (n = 16) and/or whole-exome sequencing (WES) (n = 39) of diagnostic and remission samples from 51 cases of high hyperdiploid ALL to further define the genomic landscape of this malignancy. The majority of cases showed involvement of the RTK-RAS pathway and of histone modifiers. No recurrent fusion gene-forming rearrangement was found, and an analysis of mutations on trisomic chromosomes indicated that the chromosomal gains were early events, strengthening the notion that the high hyperdiploid pattern is the main driver event in this common pediatric malignancy

    CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting

    Get PDF
    Tyrosine kinase inhibitors (TKIs) are highly effective for the treatment of chronic myeloid leukemia (CML), but very few patients are cured. The major drawbacks regarding TKIs are their low efficacy in eradicating the leukemic stem cells responsible for disease maintenance and relapse upon drug cessation. Herein, we performed ribonucleic acid sequencing of flow-sorted primitive (CD34(+) CD38(low)) and progenitor (CD34(+) CD38(+)) chronic phase CML cells, and identified transcriptional upregulation of 32 cell surface molecules relative to corresponding normal bone marrow cells. Focusing on novel markers with increased expression on primitive CML cells, we confirmed upregulation of the scavenger receptor CD36 and the leptin receptor by flow cytometry. We also delineate a subpopulation of primitive CML cells expressing CD36 that is less sensitive to imatinib treatment. Using CD36 targeting anti-bodies, we show that the CD36 positive cells can be targeted and killed by antibody-dependent cellular cytotoxicity. In summary, CD36 defines a subpopulation of primitive CML cells with decreased imatinib sensitivity that can be effectively targeted and killed using an anti-CD36 anti-body.Peer reviewe

    Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia

    Get PDF
    IntroductionThe suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods.MethodsFor this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL.ResultsBoth the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions.DiscussionThe filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL

    MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene

    Get PDF
    Double minutes (dmin)—circular, extra-chromosomal amplifications of specific acentric DNA fragments—are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in ∼1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of ∼500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the ‘episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplification

    Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia.

    Get PDF
    Hyperdiploidy, i.e. gain of whole chromosomes, is one of the most common genetic features of childhood acute lymphoblastic leukemia (ALL), but its pathogenetic impact is poorly understood. Here, we report a proteogenomic analysis on matched datasets from genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of >8,000 genes and proteins as well as Hi-C of primary patient samples from hyperdiploid and ETV6/RUNX1-positive pediatric ALL. We show that CTCF and cohesin, which are master regulators of chromatin architecture, display low expression in hyperdiploid ALL. In line with this, a general genome-wide dysregulation of gene expression in relation to topologically associating domain (TAD) borders were seen in the hyperdiploid group. Furthermore, Hi-C of a limited number of hyperdiploid childhood ALL cases revealed that 2/4 cases displayed a clear loss of TAD boundary strength and 3/4 showed reduced insulation at TAD borders, with putative leukemogenic effects

    Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues or in other human cancer types.</p> <p>Methods</p> <p>Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues (n = 22) or human cancer tissues (n = 13).</p> <p>Results</p> <p>This study revealed that e.g., the t(12;21) [<it>ETV6-RUNX1</it>] subtype of ALL and the t(15;17) [<it>PML-RARA</it>] subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively. Moreover, the 11q23/<it>MLL </it>subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however, most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to ~100 gene sets derived from normal and malignant tissues.</p> <p>Conclusions</p> <p>This study demonstrates, for the first time, that the expression profiles of childhood leukemia are largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional programs that can be used as unique targets in leukemia.</p

    Recurrent and multiple bladder tumors show conserved expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors.</p> <p>Methods</p> <p>Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses.</p> <p>Results</p> <p>We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles.</p> <p>Conclusion</p> <p>Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.</p
    corecore