253 research outputs found

    Optimal integrated sizing and operation of a CHP system with Monte Carlo risk analysis for long-term uncertainty in energy demands

    Get PDF
    In this study a probabilistic approach for optimal sizing of cogeneration systems under long-term uncertainty in energy demand is proposed. A dynamic simulation framework for detailed modeling of the energy system is defined, consisting in both traditional and optimal operational strategies evaluation. A two-stage stochastic optimization algorithm is developed, adopting Monte Carlo method for the definition of a multi-objective optimization problem. An Italian hospital facility has been used as a case study and a gas internal combustion engine is considered for the cogeneration unit. The results reveal that the influence of uncertainties on both optimal size and annual total cost is significant. Optimal size obtained with the traditional deterministic approach are found to be sub-optimal (up to 30% larger) and the predicted annual cost saving is always lower when accounting for uncertainties. Pareto frontiers of different CHP configurations are presented and show the effectiveness of the proposed method as a useful tool for risk management and focused decision-making, as tradeoffs between system efficiency and system robustness

    Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units

    Get PDF
    Micro-district heating networks based on cogeneration plants and renewable energy technologies are considered efficient, viable and environmentally-friendly solutions to realizing smart multi-energy microgrids. Nonetheless, the energy production from renewable sources is intermittent and stochastic, and cogeneration units are characterized by fixed power-to-heat ratios, which are incompatible with fluctuating thermal and electric demands. These drawbacks can be partially overcome by smart operational controls that are capable of maximizing the energy system performance. Moreover, electrically driven heat pumps may add flexibility to the system, by shifting thermal loads into electric loads. In this paper, a novel configuration for smart multi-energy microgrids, which combines centralized and distributed energy units is proposed. A centralized cogeneration system, consisting of an internal combustion engine is connected to a micro-district heating network. Distributed electric heat pumps assist the thermal production at the building level, giving operational flexibility to the system and supporting the integration of renewable energy technologies, i.e., wind turbines, photovoltaic panels, and solar thermal collectors. The proposed configuration was tested in a hypothetical case study, namely, a University Campus located in Trieste, Italy. The system operation is based on a cost-optimal control strategy and the effect of the size of the cogeneration unit and heat pumps was investigated. A comparison with a conventional configuration, without distributed heat pumps, was also performed. The results show that the proposed configuration outperformed the conventional one, leading to a total-cost saving of around 8 %, a carbon emission reduction of 11 %, and a primary energy saving of 8 %

    Star formation in clusters: early sub-clustering in the Serpens core

    Get PDF
    We present high resolution interferometric and single dish observations of molecular gas in the Serpens cluster-forming core. Star formation does not appear to be homogeneous throughout the core, but is localised in spatially- and kinematically-separated sub-clusters. The stellar (or proto-stellar) density in each of the sub-clusters is much higher than the mean for the entire Serpens cluster. This is the first observational evidence for the hierarchical fragmentation of proto-cluster cores suggested by cluster formation models.Comment: 11 pages, 3 Figures, ApJ Letters in pres

    Pre- and post-harvest evapotranspiration, carbon exchange and water use efficiency of a mature peach orchard in semi-arid climate

    Get PDF
    Better knowledge of the evapotranspiration and carbon exchange of fruit trees is needed to optimize the trade-off between water use and carbon assimilation and to better understand the role of agriculture in the biogeochemical cycles. In this work we measured water and carbon fluxes with eddy covariance and transpiration with sap flow in a drip irrigated peach orchard of 70% ground cover located in southern Spain for two years. The empirically measured crop coefficient (Kc) under good watering conditions in the summer ranged from 1 to 1.1. The daytime Net Ecosystem Exchange (NEE) flux of the orchard averaged 30 g CO2 m2 day-1 during the period of maximum activity in July. The daytime ecosystem water use efficiency (WUE) of the orchard reached a minimum in late June, flattened around 4 g CO2 L-1 throughout the summer, and increased in autumn, but was unaffected by fruit removal or post-harvest irrigation reduction imposed by the farm (30% reduction). The response of instantaneous peach ecosystem WUE to VPD was also investigated. Both Kc, NEE, leaf water potential and stomatal conductance decreased sharply after harvest. Transpiration data from some purposely over-irrigated experimental trees demonstrated that the post-harvest alterations we found were not caused by fruit removal, but are result of mild water stress originated by the irrigation reduction. Hence, the often-observed alterations in water relations after harvest in well-watered trees were not observed in this experiment. This work adds insight on peach irrigation efficiency and on the contribution of orchards to agricultural carbon budgets

    Dust Evolution in Protoplanetary Disks

    Full text link
    (abridged) In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures are summarized. We discuss recent developments in the study of grain growth in molecular cloud cores and in collapsing envelopes of protostars as these provide the initial conditions for the dust in disks. We discuss the observational evidence for the growth of grains in young disks from mm surveys, as well as the recent evidence of radial variations of the dust properties in disks. We include a brief discussion of the constraints on the small end of the grain size distribution and on dust settling as derived from optical and IR observations. The observations are discussed in the context of global dust evolution models, in particular we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of grain sizes in disks. We also highlight the limits of current models, including the need to slow the radial drift of grains.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan

    Get PDF
    Olive (Olea europaea L.) is a widely spread tree species in the Mediterranean. In the last decades, olive farming has known major management changes with high economic and environmental impacts. The fast track expansion of this modern olive farming in these recent years casts doubts on the sustainability of such important tree plantation across the Mediterranean. In this work, we performed a spatial modelling analysis to investigate the implications of climate variability and farming management on the productivity and environmental performances of olive orchards around the Mediterranean. Implementation of this research is based on the use of OliveCan; a process-based model able to illustrate responses of water and carbon balances to weather variables, soil characteristics and management techniques enabling the comprehension of olive orchard dynamics under heterogeneous conditions of climate and agricultural practices. Four main intensification levels were adopted to reflect the main olive grove types from traditional to new intensive plantations: low density LD (100 trees ha−1), medium density MD (200 trees ha−1), high density HD (400 trees ha−1) and super high density SHD (1650 trees ha−1). Managements tested were intensification, water supply (rainfed, deficit and full irrigated) and the fate of pruning residues (exported or left on the soil). Two cases studies in two of the main Mediterranean olive-growing regions with contrasting environmental conditions, Tuscany and Jaen regions, focused on mitigation alternative managements for carbon sequestration. Results showed that olive orchards responses in terms of yield and Net Ecosystem Productivity (NEP) vary along with climatic conditions. Water supply was the main driver with a production function that varies for different atmospheric demands. Application of deficit irrigation proved to boost water use efficiency. Besides, intensification from LD to SHD, presented the greatest improvements, 28–73% for yield and 50–100% for NEP. The C sequestration potential of olive orchards was confirmed. In fact, soil organic carbon (SOC) increased continuously over 400 years of simulation, reaching a state of equilibrium. Moreover, intensification and irrigation improved total carbon sequestration. Management of incorporating pruning residues in the soil increased SOC of 10.5 t C ha−1 for Tuscany and 10.8 t C ha−1 for Jaen. Findings of this research enabled the identification of the main drivers influencing the productive and environmental performance of olive groves in the different Mediterranean sub-climates. Impacts of management innovations on olive farming sustainability were also quantified which may help improve production systems for a more sustainable olive cultivation

    The pitfalls of water potential for irrigation scheduling

    Get PDF
    The water potential (Ψp), has been widely used as an indicator of plant water status for irrigation management purposes. The simple infrastructure needed for its measurement and its direct relation to basic plant physiological processes, have contributed to the popularity of the methodology. When used for irrigation scheduling, it is commonly assumed that an unavoidable relationship exists between plant transpiration (T), soil water content and Ψp. Nevertheless, it is worth remembering that variations in Ψp are not solely related to changes in soil water content, but are also an expression of the interaction between the plant and its environment. We used a soil-plant-atmosphere-continuum (SPAC) model to highlight the importance of considering such interactions through a series of in silico experiments. Our analysis shows that evaporative demand, the hydraulic architecture of the plant, and the texture and depth of the soil play key roles in the final Ψp observed. To establish irrigation programs based on Ψp, without considering the environmental and plant factors that influence it, can create the paradox of having a plant that suffers greater water stress even when high irrigation volumes are applied. The conclusions from our in silico analysis provide some warnings that should be considered when using Ψp to schedule irrigation.info:eu-repo/semantics/publishedVersio

    Assessment of a Remote Sensing Energy Balance Methodology (SEBAL) Using Different Interpolation Methods to Determine Evapotranspiration in a Citrus Orchard

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."A surface energy balance algorithm for land (SEBAL) for estimating evapotranspiration (ET) has been parameterized and tested in a 400-ha drip irrigated citrus orchard. Simultaneously, during three growing seasons, energy fluxes were measured using Eddy Covariance. Instantaneous fluxes obtained with SEBAL using 10 images from Landsat-5 were compared with the measured fluxes. The Perrier function was the best method for properly estimating the roughness momentum length for discontinuous canopies, as in citrus orchards. Crop height was estimated using LIDAR data. In general, SEBAL performed well for net radiation estimation but failed in soil heat flux estimation. Latent heat estimations from the SEBAL model had a relative root mean square error (rRMSE) of 0.06 when compared with measurements obtained by Eddy Covariance. Three procedures were tested for up-scaling the instantaneous ET estimates from SEBAL to daily ET values: 1) assuming the fraction between the actual ET and the reference ET is constant throughout the day; 2) using actual local crop coefficient curves; and 3) using an up-scaling factor where the fraction of hourly ET to daily ET equals the ratio of hourly to daily global solar radiation. This last method gave acceptable results for daily ET estimations (rRMSE = 0.09) and for 15day ET (rRMSE = 0.19), and its main advantage is that no local data are required. It is concluded that the SEBAL methodology can be successfully applied for determining actual ET, even in discontinuous citrus canopies. However, additional parameterizations of momentum roughness length were needed in order to obtain reliable ET determinations.This work was supported in part by MINECO project Rideco-Consolider CSD2006-0067 and in part by Interreg IV Sudoe project "Telerieg."Jiménez Bello, MÁ.; Castel, JR.; Testi, L.; Intrigliolo Molina, DS. (2015). Assessment of a Remote Sensing Energy Balance Methodology (SEBAL) Using Different Interpolation Methods to Determine Evapotranspiration in a Citrus Orchard. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 8(4):1465-1477. https://doi.org/10.1109/JSTARS.2015.2418817S146514778

    Impact of extreme meteorological events on crop yield: a common framework approach

    Get PDF
    The hypothesis is that yield variations due to an extreme event (cold temperature, high temperature or water deficit) is mediated by a change in Harvest Index (HI), while the main effect of weather on crop performance is already captured by existing crop models
    corecore