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Assessment of a remote sensing energy balance methodology (SEBAL) using 

different interpolation methods to determine evapotranspiration in a citrus 

orchard 

 

A surface energy balance model (SEBAL) for estimating evapotranspiration (ET) has 

been parameterized and tested in a 400 ha drip irrigated citrus orchard. Simultaneously, 

during three growing seasons, energy fluxes were measured using Eddy Covariance. 

Instantaneous fluxes obtained with SEBAL using 10 images from Landsat-5 were 

compared with the measured fluxes. The Perrier function was the best method for 

properly estimating the roughness momentum length for discontinuous canopies, as in 

citrus orchards. Crop height was estimated using LIDAR data. In general, SEBAL 

performed well for net radiation estimation but failed in soil heat flux estimation. Latent 

heat estimations from the SEBAL model had a relative Root Mean Square Error 

(rRMSE) of 0.06 when compared with measurements obtained by eddy covariance. 

Three procedures were tested for up-scaling the instantaneous ET estimates from 

SEBAL to daily ET values: 1) assuming the fraction between the actual ET and the 

reference evapotranspiration is constant throughout the day, 2) using actual local crop 

coefficient curves, and 3) using an up-scaling factor where the fraction of hourly ET to 

daily ET equals the ratio of hourly to daily global solar radiation. This last method gave 

acceptable results for daily ET estimations (rRMSE = 0.09) and for15-days ET 

(rRMSE= 0.19), and its main advantage is that no local data are required. It is 

concluded that the SEBAL methodology can be successfully applied for determining 

actual ET, even in discontinuous citrus canopies. However, additional parameterizations 

of momentum roughness length were needed in order to obtain reliable ET 

determinations.  
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1. Introduction 

 

Evapotranspiration is a key component of hydrological balance. In addition, water use 

in tree orchards is the main variable to be determined for precise and efficient water 

management of irrigated lands. Several tools and models for estimating 

evapotranspiration in tree orchards have been proposed (Rana and Katerji 2000). 

Among them, the most widely used approach is that proposed by FAO (Allen et al. 

1998), which takes into account climatic variables included in the reference 

evapotranspiration (ETo), as well as the crop type and its characteristics, included in a 

single crop coefficient (Kc). The estimated crop evapotranspiration (ETc) is calculated 

as the product of ETo  multiplied by Kc. However, there is evidence that in tall and 

discontinuous canopies, such as citrus orchards, with a high degree of coupling to the 

environment, Kc may change depending on local environmental conditions (Annandale 

and Stockle 1994; Ballester et al. 2013) and the vegetation amount, height and density 

(Allen and Pereira 2009). It is therefore important to determine the possibility of using 

other alternatives for calculating the actual orchard ETc rate. Remotely sensed data 

obtained from different sensors have been used to calculate actual evapotranspiration 

(ET) by means of different operational models (Liang et al. 2010; Kalma et al. 2008). 

Two general types of remote sensing approaches for estimating ET have been 

successfully applied in agricultural and hydrological water use studies as indicated by 

Gonzalez-Dugo et al. (2009). One of these approaches consists in estimating crop 

coefficients from remotely sensed vegetation indices derived from surface reflectance 

data. These methods produce Kc maps that reflect the crop growth stage and, with the 

support of ETo data obtained from meteorological stations, crop water requirements can 

be estimated. Several studies have related the Normalized Differenced Vegetation Index 
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(NDVI) or the Soil Adjusted Vegetation Index with Kc (Jayanthi et al. 2007;González-

Dugo and Mateos 2008; Mateos et al. 2013). The main drawback of these techniques is 

that they rely on empirical, site-specific relationships between an index of vegetation 

(e.g. ground cover, plant size, leaf area index, etc.) and Kc, which are not always 

available for all agricultural land-uses. In addition, these empirical relationships are 

most often obtained under base-line conditions, with no soil water limitations. To 

overcome this limitation Stanghellini et al. (1990) proposed that since the ratio of crop 

evapotranspiration to reference evaporation is not constant, when knowledge of a 

number of crop-specific parameters is available, a "theoretical" transpiration formula is 

likely to deliver better estimates of crop water requirement than calculations based on 

crop coefficients. Nevertheless this method has to be tested and validated with actual ET 

measures. 

The second approach for determining ET via remote sensing is using models that 

calculate the latent heat as a residual of the surface energy balance (SEB). Bastiaanssen 

et al. (1998) developed Surface Energy Balance Algorithms for Land (SEBAL). This is 

a satellite-based image-processing algorithm calibrated using inverse modeling at 

extreme conditions to develop image specific estimations of the sensible heat flux 

component of the surface energy balance and to remove systematic biases in estimates 

of net radiation, soil heat flux, radiometric temperature and aerodynamic resistance. The 

innovative component of SEBAL is that the energy balance modeling uses a near-

surface temperature gradient which is indexed to radiometric surface temperature, 

thereby eliminating the need for absolute surface temperature calibration, which has 

been a major impediment to operational satellite ET (Kustas and Norman 1996). 

The application of the SEB models requires the use of sensors having a thermal band. 

However, these satellite sensors have coarse spatial resolution for irrigation 
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management. As an example, the lowest thermal spatial resolution for Landsat TM5 is 

120 m and for TM7 is 60 m (Kustas et al. 2004). Landsat 8, launched in 2013, has a 100 

m resolution. For all of these platforms, final products can be re-sampled to 30 m. This 

pixel size makes impossible the accurate separation of canopy temperature from the 

sunlit and shaded soil background (Berni et al. 2009), so final temperature is the result 

of all the elements present in the pixel. In addition, when satellite passes are infrequent, 

the applicability of remote sensing-based estimates of ET is hampered by the fact that 

data is only available for each satellite revisit time if cloudless conditions allow the use 

of the images. 

Another limitation of the SEB approaches is that the instantaneous ET (ETinst) obtained 

at the time of the satellite pass has to be extrapolated to daily values in order to be 

useful, both for irrigation scheduling purposes at farm level and for general water 

resource management at the irrigation district or watershed level. As González-Dugo et 

al. (2009) described, daily scaling is generally performed by assuming the conservation 

of a scaling factor determined at the snapshot time, such as the evaporative fraction 

(Crago and Brutsaert 1996) or the ratio of ET to ETo (Allen et al. 2007a). These 

assumptions have been applied in sparse woody canopies such as pecan (Samani et al. 

2009) and olive (Santos et al. 2012). However, Ferguson et al. (2010) identified the 

constant ET to ETo ratio approach as a major source of uncertainty in the remote 

sensing based energy estimates, particularly for agricultural systems different than 

homogeneous grasslands where a low degree of canopy coupling with the surrounding  

atmosphere exists (Jarvis 1985). This is the case for citrus trees, an evergreen perennial 

crop that regulates stomatal closure under changing environmental conditions (mostly 

air vapor pressure deficit), therefore resulting in Kc variability along the day 

(Kriedemann 1986).  
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There are few studies conducted on the calculation of ET in citrus. Minacapilli et al. 

(2009) compared two SEB approaches, the SEBAL model and the TSEB (Two-Source 

Energy Balance model; Norman et al, 1995) to estimate the actual ET from typical 

spatially sparse Mediterranean vegetation (with olives, citrus and vineyards). However, 

ET extrapolation was not treated further than for a one day period, given that the 

imagery used was obtained by an airborne sensor flying during a single day. Consoli et 

al. (2006a) used high spatial resolution images from the Ikonos satellite to estimate Kc 

from derived Leaf Area Index (LAI) using the methodology proposed by Stanghellini et 

al. (1990). LAI estimation was validated with field measures, but ET estimations were 

not compared with an independent ET determination. Mateos et al. (2013) used the dual 

crop coefficient and the synthetic crop coefficient approaches with Landsat 5 images in 

a mandarin orchard. ET estimations were compared with eddy covariance data from an 

experiment conducted by Villalobos et al. (2009) and were reasonably well estimated. 

In this work, the Surface Energy Balanced Algorithm (SEBAL, Bastiaansen et al., 

1998) has been applied to a citrus orchard. Sensible heat (H) and latent heat (LE) fluxes 

obtained from 10 dates from Landsat Tm5 images were compared with data supplied by 

an Eddy Covariance flux tower. Three methods were tested to extrapolate instantaneous 

ET to daily and to 15-day periods. 

 

2. Methodology 

 

2.1 Experimental field   

The experimental field was a commercial farm of 400 ha planted with Hernandina 

mandarin (Citrus clementina, Hort ex Tan) grafted on Carrizo Citrange (Citrus sinensis, 

Osb. 3 Poncirustrifoliata, Raf.) at a spacing of 6 m by 3 m, located in Chiva, Valencia, 
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eastern Spain (39°27'15'' N, 0° 33'32'' W); 105 m above sea level, wind regime typically 

dominated by sea breezes and distance to sea of 11 Km. Fig 1 shows the location of the 

study area.The plot was flat and well drip irrigated throughout the growing season with 

6 emitters of 4 l h-1per tree, arranged in two lines. Trees were mature, with an average 

height of 2.80 m and the area shaded by the canopy was 66% of the allotted spacing. 

Soil was of sandy loam texture.  

The three seasons studied showed the classical climatic Mediterranean 

characteristics with the more intense rainy period concentrated in autumn, especially in 

2008 and 2009 (Fig 2). During the late spring and summer time, ETo is considerably 

higher than precipitation. Irrigation was applied to reach the full crop 

evapotranspiration, hence no soil water limitations occurred during the experiment. 

Table 1 shows the ETo, the ETc calculated from the Eddy flux tower (see below), the 

precipitation and the irrigation volumes applied for each of the entire 3 seasons. 

 

2.2 Eddy covariance measurements  

 

The eddy covariance equipment was installed at 6.5 m height on a scaffold, placed in 

the plot center. The estimated radius of the flux footprint was 485 m. Fig 1 shows the 

flux tower footprint. This was calculated considering a distance of approximately 100 

times the instrument height above the zero plane displacement height, 2/3 of the canopy 

height. Then the estimated footprint radius) was 485 m. Measurements started on April 

2008 and ended on October 2010. The equipment consisted of a three-dimensional sonic 

anemometer (Model CSAT3, Campbell Scientific, Logan, UT USA), an open-path gas 

analyser to measure water vapor density (Model 7500, Licor, Lincoln, USA), a net 

radiometer (CNR2, Kipp&Zonen, Delft, The Netherlands), three soil heat flux plates 
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and thermocouples for soil temperature measurement (Model HFP01, Campbell 

Scientific, Logan, USA). All the equipment was fed by solar panels and data sampling 

frequency was 10Hz. The mean values were recorded every 30 minutes by 2 

dataloggers; (CR1000, Campbell Scientific, for turbulent flows and CR10X Campbell 

Scientific, for radiation and soil heat flux) with data transmission via GSM modem. 

The data were processed to obtain 30-minute co-variances and averaged for each 24 h, 

including nocturnal data, to obtain the daily averages. Corrections were applied to the 

latent heat (LE) to account for air density fluctuations due to heat and vapor transfer 

(Webb et al. 1980). Spectral transfer functions were applied to correct for frequency 

response on sensor separation, path length averaging and signal acquisition and 

processing time (Moore 1986). The soil heat flux was obtained by weighted averages of 

measured values from the flux plates at four different positions (under the canopy, in 

wetted and dry soil portions, and in the middle of the alleyway). Three soil thermistors, 

buried at 0.025 m depth close to the plates, allowed the calculation of the heat storage of 

the soil above the plates for correcting G by the combination method (Kimball and 

Jackson 1975). Half hourly and daily flux measurements of LE and H were corrected 

applying the Bowen ratio closure method (Twine at al. 2000), including the nighttime 

data. 

Half hourly ETo was calculated using the FAO Penman-Monteith equation as in Allen et 

al. (1998) using the solar radiation, air temperature, air humidity, and wind speed values 

recorded in an automated weather station located near the orchard. The crop coefficient 

(i.e. ratio between actual ET to ETo) was calculated each 30 minutes for the whole study 

period.  

 

2.3 SEBAL model calculations 
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During the period when Eddy Covariance data were obtained (from 29/04/2008 to 

28/09/2010), ten images from Landsat 5 satellite were used for SEBAL model 

calculations. In the study area, the images were free of clouds and no rain had occurred 

at least five days before image acquisition. 

Acquisition time for all of the images was at 10:30 GMT. Images were geometrically, 

radiometrically and atmospherically corrected following the Remote Sensing Spanish 

National Plan protocols (Chuvieco and Hantson 2010). Surface temperature was 

calculated using the correction proposed by Cristobal et al. (2009) which takes into 

account air water vapor content and air temperature. Nevertheless, in SEBAL the near-

surface temperature gradients are an indexed function of radiometric surface 

temperature, thereby eliminating the need for absolutely accurate surface temperature 

(Allen et al. 2007b). 

SEBAL estimates LE as a residual of the energy balance equation.  

LE =Rn – G – H         (1) 

where LE is the latent energy consumed by evapotranspiration, Rn is the net radiation, G 

is the sensible heat flux conducted into the ground and H is sensible heat convected to 

the air, all in W m-2. Rn was calculated as in Allen et al. (2011). For G calculations, the 

empirical formula proposed by Bastiaanssen (2000) was adopted, which estimates the 

ratio G/Rn near midday as: 

)98.01()0074.00038.0(
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   (2) 

where Ts is the surface temperature (K),  is the surface albedo and NDVI is the 

normalized difference vegetation index. G is then calculated by multiplying G Rn
-1 by 

Rn. 

H is estimated from an aerodynamic function: 
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where ρ is air density (kg m-3), Cp is specific heat of air at constant pressure (1004 J·kg-

1·K-1) and rah1,2 is the aerodynamic resistance (s m-1) between two near-surface heights, 

z1 and z2 (generally 0.1 and 2 m above the zero-plane displacement height) computed as 

a function of the estimated aerodynamic roughness of the particular pixel. dT (K) is the 

temperature difference between the two heights z1 and z2  (Allen et al. 2011). dT is 

assumed to be linear in proportion to radiometric TS as Bastiaanssen (1995) empirically 

proved: 

sTabdT          (4) 

Since there are two unknown variables in (3), dT and rah, an internal calibration process 

is performed. For that purpose, two extreme pixels, representing very dry and very wet 

agricultural surfaces, are selected as described in Allen et al. (2011).  

In SEBAL, the cold pixel is a local water body, where dT=0 is assumed, that means air 

temperature is equal to Ts and H is expected to be zero. The dry end of the dT function 

is estimated for a selected “hot” pixel in the image where the soil is assumed to be dry 

enough that LE=0: 

ahhot

n
pairhothot r

GR
CdT

)( 
          (5) 

where rah hot is rah computed for the roughness and stability conditions of the hot pixel. 

The values for a and b in Equation (4) are then estimated from these two pairs of dT and 

associated Ts values.  

In the present study, a water body was selected as cold pixel for all images. This option 

was selected instead of choosing a well-irrigated crop surface having full ground cover 

by vegetation as proposed by Allen et al. (2007b), because of: i) the presence of a 
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nearby lake with sufficient size to clearly select cold pixels and ii) the absence of well 

watered fields with a full-cover crop of sufficient size near the study area. Hot pixels 

were selected in the abandoned and non-cropped agriculture plots without vegetation 

near the study area. Pixel selection was performed manually with the help of updated 

high resolution ortophotos. Dry pixels changed through the season if the presence of 

vegetation was detected by analyzing the NDVI value, making sure there was not 

vegetation.  

 

2.4 Momentum roughness length parameterization  

The aerodynamic resistance (rah) depends on the momentum roughness length (zom) 

which is a measure of the drag form, air turbulence and skin friction for the layer of air 

that interacts with the surface (Campbell and Norman 1998). In general, the smaller the 

value specified for zom the smaller the estimate for sensible heat flux, and thus the larger 

the ET estimate will be. Zom has usually been empirically estimated from the average 

vegetation using the following equation (Brutsaert 1982) 

        (6) 

where h is canopy height (m). 

SEB models based on SEBAL such as METRIC (Mapping Evapo-Transpiration with 

high Resolution and Internalized Calibration, Allen et al. 2011) estimate zom either using 

a land use map or according to the vegetation amount.  

In the present experiment the Perrier function (Perrier 1982), which is based on LAI and 

tree canopy architecture for sparse trees, was used to estimate zom. However, in order to 

obtain h for the citrus orchard, LIDAR (Light Detection and Ranging) data were used 

instead of employing tree density and canopy shape factors, as in Santos et al. (2012). 

LIDAR data were obtained from the Spanish National Plan for Remote Sensing and had 

hzom  12.0
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a spatial resolution of 0.5 impacts per m2. Those LIDAR impacts classified as 

vegetation (ASPRS 2009) were selected and re-sampled to the same resolution of the 

Landsat images. In a 30*30 m2 resolution image, the maximum number of impacts on 

vegetation could be 30. As the laser can impact in any part of the canopy, the value 

assigned to each pixel was done calculating the average height plus the standard 

deviation. Selecting the maximum height value as the re-sampling method would result 

in 5% higher estimates of canopy height in comparison with the average height plus the 

standard deviation method. 

The acquisition of LIDAR data was in July, 2009. Since no more LIDAR data were 

available for the three studied seasons and trees were mature, height crop was assumed 

constant throughout the study. The factor f was assumed to be 0.5. 

To contrast zom results, the Raupach's methodology (Raupach 1994) based on the frontal 

area index, which has been tested on a wide range of canopies (Verhoef et al. 1997), 

was applied to the study site and the results were compared with the Perrier function. As 

in SEBAL, z1 and z2 are heights above the zero-plane displacement plus the momentum 

roughness length, the zero-plane displacement was not estimated by any of the 

mentioned methods. Finally the standard procedure for zom estimation (i.e. zom =0.12h) 

was also used. 

 

2.5 Up-scaling instantaneous ET from instantaneous values to daily and 15-day values 

ETinst has to be extrapolated to temporal frequency values useful for applications in 

irrigation scheduling and water resources management, such as daily or 15-day values 

(the Landsat revisit period is 16 days). The method that assumes self-preservation in the 

diurnal cycle of the energy budget, that is, that the evaporative fraction [EF = LE/(Rn - 

G)] remains constant over the day (Crago 1996), was not considered, given that flux 
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tower data are required to calculate LE, a fact that reduces the possibilities of 

extrapolation. Three other methods were used for extrapolation. 

 

2.5.1 Constant Kc through the day 

The first approach used assumes that the instantaneous single crop coefficient (Kcinst) 

calculated from ETinst and ETo is constant throughout the day (Allen et al. 2011).  

 

        (7) 

where ETinst is the estimated instantaneous rate (extrapolated to hourly data, mm h-1) 

and EToinst is the reference evapotranspiration at the time of the snapshot (mm h-1). 

Daily ET values obtained with this up-scaling procedure (ETConstKc) are calculated as 

follows: 

ETConstKc = ETodaily*KCinst       (8) 

where ETodaily is the daily ETo obtained from a near meteorological station by the FAO 

method (Allen et al. 1998) 

 

2.5.2 Constant relation between ET and the observed solar radiation 

Since the assumption that Kcinst is constant throughout the day might not hold true for 

certain orchard systems, Ryu et al. (2012) developed an alternative method based on 

assuming constancy in the ratio of ET to potential solar radiation (Rso, W m-2). Under 

this assumption, daily ET values (ETSolRad) are calculated using the following formula 

where SFd(t) is the upscaling factor. 

       

      (9) 
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Van Niel et al. (2012) used observed fluxes as global solar radiation (Rs) and available 

energy. As up-scaling factors, they tested Rso and solar irradiance modeled fluxes 

obtained from a sine function. Their usefulness in converting the instantaneous ET to 

daily values on selected days over a 10-year period from two sites of contrasting climate 

was tested. Their findings suggest that using Rs was the best performing up-scaling 

factor in deriving daily ET. Cammalleri et al. (2013) compared four scaling methods 

using eddy covariance data collected at 12 AmeriFlux towers, sampling a wide range of 

climatic and land cover conditions. The methods tested used Rs, Rso, instantaneous ET 

and the evaporative fraction. Best results were obtained with Rs due to absence of 

systematic biases. Rso proved to be also reliable under near clear-sky conditions. The up-

scaling factor SFd(t) is calculated as follows:  
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Where SFd(t) is the up-scaling factor for a particular day (d) of the year and function of 

the time t of ETinst , n is the number of days considered for extrapolation and 1800 is the 

number of seconds in 30 min. 

Rs was selected to be studied instead of Rso. Rs is a common parameter reported by 

meteorological stations, and gives information about the cloudiness when it is related 

with Rso (Allen et al. 1998), which can affect the ET up-scaling.  

 

2.5.3 Up-scaling of ETinst assisted by daily Kc curves derived from eddy covariance 

fluxes. 

Kcinst values from Eddy Covariance measurements, for each daily hour were obtained 

from data registered during the three irrigation seasons. Hourly corrected LE were 

obtained from the flux tower and hourly ETo from a nearby meteorological station. 
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Results were grouped by months. As Fig 3 shows, Kcinst curves exhibit a parabolic 

behavior. For polar-orbiting satellites like Landsat, only one point of the parabola can 

be calculated for each revisited period. This is not enough to interpolate the Kcinst 

parabolic curves because at least three points are required. This method implies that 

previous research to characterize Kcinst daily curves should have been conducted. From 

hourly ETo data, daily ET can be calculated as follows: 

 

      (11) 

where Kcinst_i is the instantaneous ET for the fraction of a day i, ETo_i is the reference 

evapotranspiration for the fraction of a day i, and n is the total number of equal periods 

the day is divided. 

Since Kcinst always shows a parabolic trend, the estimated daily ET obtained from 

empirical curves can be improved with the data point from the image. Assuming Kcinst 

curves are displaced a constant value for different days as Fig 4 illustrates, the up-scaled 

ET named (ETParabKc) can be improved by correcting the monthly mean Kcinst curves 

with Kcinst obtained from the image as follows: 

 (12)   

 

where Kcinst_SEBAL is the instantaneous ET fraction at the satellite overpass time 

calculated by SEBAL and Kcinst is the instantaneous ET fraction estimated by means of 

previous experimental data, in this case obtained from the eddy covariance tower. In 

this way, estimated Kcinst curves are displaced, resulting in a better fitting to the actual 

ET fraction for the time when the image is taken. This method implies that the obtained 

parabolic Kcinst patterns can be used for daily ET up-scaling, without the need of having 

eddy covariance measurements. 
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2.5.4 Up-scaling instantaneous ET from instantaneous values to daily and 15-day 

values 

Given that Landsat revisit time is 16 days, it is important to obtain ET estimates for the 

days between consecutive snapshots. The three previously mentioned up-scaling 

methods (constant KCinst, global radiation and Kc parabolic curve) were then used to 

compute 15-day ET values.  

 

2.6 Rn correction 

Rn is calculated by subtracting all outgoing radiant fluxes as depicted in Allen et al. 

(2007b). The incoming solar radiation (Rs) can be obtained easily from a meteorological 

station instead of being estimated from Rso. The outgoing long-wave radiation is 

computed by estimating the surface emissivity using empirical formulas where LAI is 

computed. However, these types of equations have not yet been parameterized for 

citrus. To avoid and assess the error produced when estimating Rn, LE calculated by 

SEBAL was corrected as follows: 

 

      (13) 

 

3. Results and discussion 

 

3.1 Analysis of instantaneous fluxes 

SEBAL was applied to the ten scenes, calculating the instantaneous fluxes that comprise 

the surface budget energy equation Rn_SEBAL, H_SEBAL, G_SEBAL and finally LE _SEBAL as 

residual. The flux tower footprint was used as a mask to extract the average pixel values 
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for each flux. These outcomes were compared to those obtained from the Eddy 

Covariance fluxes (Rn_EC, H_EC,G_EC and LE_EC). In the ten days of acquisition of 

satellite images the Eddy Covariance closure ratio CR was calculated as (LE_EC + H_EC) 

/ (Rn_EC - G_EC). The closure ratios shown in Table 2 were calculated for the 30 minutes 

when images were taken and for the whole day. The average of the closure ratios was 

0.76 (30min fluxes at the time of images) and 0.72 (whole day).  

The Perrier function was applied to the studied area and the mean zom/h for the ten 

analyzed images was 0.21. It contrasted with the obtained zom/h with the Raupach 

method where the relation was 0.097, assuming the coefficients reported in Tian et al. 

(2011). This value was lower than the general suggested value by Brutsaert (1982) 

where zom/h=0.125.  

The Relative Root Mean Square Error (rRMSE) comparing the H_SEBAL calculated by 

Perrier, Raupach and Brutsaert to H_EC, were 0.10, 0.14 and 0.12 respectively. 

Fig 5 shows the comparison to H_EC for the ten studied dates. The Raupach method 

underestimated sensible heat for all dates. It suggests that formula coefficients should be 

parameterized for citrus. Using the Brutsaert method there was also a tendency to 

underestimate the sensible heat, but less than with the Raupach’s method. Since the 

lowest rRMSE were obtained using the Perrier function, and there was no indication of 

any clear bias, the Perrier function was the selected method to calculate zom. 

The comparisons of the fluxes measured by Eddy Covariance and estimated by SEBAL 

are summarized in Table 2. The first flux estimated by SEBAL is Rn which determines 

the available energy for the rest of the fluxes. As an average for the ten dates, rRMSE 

for Rn was 0.07. In addition, on only two dates (15/08/2008 and 12/10/2009) the error 

for Rn determination was greater than 0.08 (Table 2). These results suggest that the 

SEBAL model determines fairly well the net radiation incident over a drip irrigated 
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citrus orchard, under coastal Mediterranean conditions with general high air relative 

humidity due to the sea influence. 

On the other hand, the mean RMSE and rRMSE for G were 28,7 W m-2 and 0.86, which 

means that the adopted formula (Eq 2) does not estimate G in an acceptable way. The 

formula used for estimating G was developed by Bastiaanssen (2000) using data from 

cotton fields, often characterized by full ground and continuous canopy cover, very 

different aerodynamic conditions than in citrus orchards. On average for the 10 days 

studied, G accounted for only 8% of Rn at the time when images were taken. As Consoli 

et at. (2006b) and Villalobos et al (2009) reported in other energy balance studies in 

orchards; G was the quantitatively less important component of the energy balance. In 

any case, it seems that further research should be performed to develop a SEB method 

to better estimate G in conditions of drip irrigation and sparse trees as citrus orchards.. 

Other methods that take into account the soil thermal inertia should be analyzed 

(Murray and Verhoef, 2007a and 2007b). With the use of remotely sensed values of Ts 

and fractional soil surface coverage, which will be a function of leaf area index or 

NDVI, G predictions were improved for bare and sparsely vegetated soils. 

Regarding H, the worst result was obtained on 12/10/2009 when the rRMSE of Rn was 

also high. This is due to the fact that when Rn is overestimated in the selected “hot” 

pixel, like in the Eddy covariance footprint pixels, dT is also overestimated (see (5) for 

details). On the other days, the RE for H comparisons varied between 0.03 and 0.17, 

indicating that H was reasonably well computed by the SEBAL model. 

After applying the correction (13), LE_SEBAL rRMSE was reduced from 0.09 to 0.06 

implying that if Rn estimation is improved, the re-parameterized SEBAL estimates LE 

more precisely. 
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The comparisons between the H_SEBAL and LE_SEBAL_C predictions with the respective 

Eddy Covariance measured values are depicted in Fig 6. H_SEBAL was linearly related to 

the corresponding HEC data, with a coefficient of determination (R2) of 0.87. In the case 

of the LE_SEBAL_C, the correlation between SEBAL and Eddy Covariance measurements 

was less tight (R2 =0.71). This lower correlation is likely related to the smaller range of 

variability compared to H_SEBAL. As shown in Fig 6, SEBAL tended to slightly 

underestimate the LE values measured by Eddy Covariance. This was due to the fact 

that G_SEBAL was overestimated and, despite its low contribution, the overestimation 

affects LE in the same amount, (since LE is calculated as the residual). 

3.2 Up-scaling of instantaneous evapotranspiration to daily values.From the 

instantaneous ET, daily ET values were calculated using the three up-scaling 

procedures. The results obtained are shown in Table 3. 

Under the assumption of constant Kc along the entire day, good results were obtained 

for 5 dates which had an RE lower than 0.1. However, for the rest of the dates the error 

was higher, reaching a maximum of 0.35 on 19/06/2008. For those dates when Kcinst 

was similar to the estimated daily Kc obtained by Eddy Covariance, there was good 

agreement between ETConstKc estimated by SEBAL and the ET values obtained by Eddy 

covariance. The large discrepancies obtained on the remaining days are presumably 

attributable to the considerable diurnal variation of Kc values (Kriedemann 1986; 

Villalobos et al. 2009). For instance, in 19/06/2008 Kc varied from a maximum value of 

around 1.0 registered early in the morning to a minimum value close to 0.39 reached at 

midday when the evaporative demand was high (Fig 7). Although the rRMSE was high 

using the constant Kcinst up-scaling method, there was a tight correlation (R2=0.90) 

between the estimated ET and the measured values. Nonetheless, ET was 
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underestimated because when the images were taken (10:30 GMT), the Kcinst was lower 

than the daily kc. 

Allen et al. (2007a), compared sugar beet ET measured in a weighting lysimeter with a 

SEB approach assuming constant Kc throughout the day. For the eight dates of their 

experiment, an rRMSE of 0.3 was obtained. Eliminating a date whose error was 1.39, 

the rRMSE decreased to 0.14. This error is slightly lower than that obtained in the 

present work, for the constant Kc up-scaling method (0.18). On the other hand, Allen et 

al. (2007a), using this scaling method, obtained an R2 of 0.81 when comparing LE 

measurements from SEBAL and from lysimeter data. Similarly, Gonzalez-Dugo et al. 

(2009) obtained an R2 of 0.76 in rain-fed corn and soybean crops between METRIC 

estimates and Eddy Covariance. It seems, then, that when the crop height estimation and 

the momentum roughness length are parameterized, assuming constant Kcinst for 1-day 

extrapolation, SEBAL can yield similar results in terms of errors and correlation, both 

in vegetable crops and in citrus trees. 

When using the global solar radiation up-scaling method to obtain the daily ET 

(ETSolRad) there was a lower rRMSE than with the ETConstKc (Table 3). This is because 

the ratio of hourly to daily ET was found to be proportional to the ratio of hourly to 

daily global solar radiation (Fig 8). However, the correlation was worse compared to 

ETConstKc (0.7 vs. 0.9), meaning that it is more accurate but less robust, due to more 

variable biases. 

When daily ET was up-scaled using the Kcinst parabolic curve procedure here developed, 

the rRMSE of the Eddy Covariance and SEBAL ET was 0.08. This high level of 

agreement between both ET measurements was obtained by displacing the monthly 

Kcinst curve using the factor Kcinst_SEBAL·Kcinst
-1. For instance, for 13/09/2009, the 

corrected Kcinst parabolic curve (13/09/2010_Kcinst_SEBAL) is in closer agreement with the 
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measured Kcinst curve obtained using Eddy Covariance than with the average daily Kcinst 

curve for September (Fig. 9). For 13/09/2010 the RE for the comparisons between the 

ETParbKc and that measured by Eddy Covariance ET was 0.01 (Table 3). When the 

monthly average Kcinst curve is used, the rRMSE between SEBAL and Eddy Covariance 

ET increases to 0.33, highlighting the utility of the procedure here employed of 

displacing the parabolic curves. Indeed, using the Kcinst parabolic curves, up-scaling 

method allowed reduction of the error of the ET SEBAL determinations to values even 

lower than those previously reported by Allen et al (2007a) in sugar beet, assuming 

constant Kcinst along the day.  

Regardless of the up-scaling methods used, the daily ET values obtained are also 

closely related with previous drip irrigated citrus ET data obtained in the same region 

by Castel (2000) using a weighting lysimeter where an empirical relationship between 

tree size and Kc was obtained. In the present experiment, the average Kc value obtained 

using the ETParabKc upscaling method was 0.57. The orchard had an average tree shaded 

area of 66% which corresponds to a Kc value of 0.63 when using the formula reported 

by Castel et al. (2000). As a consequence, it seems possible in the near future to use the 

reported SEBAL methodology to determine citrus ET for large orchards and therefore to 

schedule irrigation by matching water application to the remotely sensed ET data. This 

is an important outcome since it should be considered that Citrus is one of the most 

important crops in the world with an annual production in 2011 of almost 129 million 

tons (Faostat 2011). In Spain alone, there are more than 314.000 ha planted with citrus 

trees, of which around 292.000 ha are irrigated (MAGRAMA 2013).  

 

3.3 Up-scaling instantaneous evapotranspiration to 15-days ET values. 
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Since the revisiting period of Landsat images is 16 days, ETinst was extrapolated to this 

time interval and compared to acquired data by eddy covariance. The three 

aforementioned up-scaling methods were used and results are shown in Table 4.  

When Kcinst is considered constant along the day for 15-day periods, ET was 

underestimated compared to Eddy Covariance. This is because the Kcinst at image time 

acquisition was lower than the averaged 15-day Kc for most of the following 15- day 

periods under analysis. Only for one period of time after day (24/07/2009) was ET 

overestimated (Table 4). The average rRMSE for all the image analysis was 0.36, higher 

than the RE obtained for the daily up-scaling time period (Table 3) and for the 

instantaneous ET measurements (Table 2). This suggests that the assumption of 

constant Kcinst for citrus results in increasing errors in ET estimation when it is up-scaled 

to longer time periods. 

Using the global solar radiation up-scaling factor, the 15-day ET was better estimated 

than simply using the constant Kcinst assumption (Table 4). Nevertheless, the rRMSE 

(0.19) was higher than for daily estimates (Table 3). This is because the ratio of hourly 

to daily global solar radiation and hourly to daily ET varied among the 15-day period 

after the image acquisition day. For instance, for day 15/08/2008, the 15-day ET 

estimates obtained using the global solar radiation up-scaling factor overestimated the 

ET determinations obtained by Eddy Covariance (RE=0.33, Table 4). In fact, for most 

of the days after 15/08/2008, the ratio of hourly to daily solar radiation was lower than 

the measured hourly to daily ET ratio. This fact can be explained in part by the effect of 

cloudiness that can be measured by the relative shortwave radiation, the ratio of the 

solar (Rs) to the clear-sky solar radiation (Rso, Allen et al. 1998). Fig 10 shows the 

relative shortwave radiation at the satellite pass (RsH RsoH-1) and the whole day (RsD 

RsoD-1). For most of the days, the ratio of hourly to daily solar radiation was lower than 



 
22

the measured hourly to daily ET ratio. Only for those days where the difference of RsH 

RsoH-1to RsD RsoD-1 was larger than 0.1, the radiation ratio was higher.  

Fig 11 plots the ratio between the measured hourly to daily ET ratio (ETH ET24H
-1) and 

hourly to daily solar radiation (RsH RsD
-1) vs. the hourly (RsH RsoH

-1) to daily global solar 

radiation ratio (RsD RsoD
-1) at the satellite pass and daily shortwave radiation. The R2 

was 0.67 and it was statistically significant (P=0.04). This means that when RsH RsoH
-1

 to 

RsD RsoD
-1

 differs, i.e. the cloudiness at the satellite snapshot time was different from the 

daily cloudiness, the ratio between ETH ET24H
-1 and RsH RsD

-1 is affected. This 

relationship has a negative slope. That is, when the cloudiness at the satellite time was 

higher than day cloudiness (RsH RsoH
-1

 / RsD RsoD
-1

 < 1), the ratio RsH RsD
-1 was lower 

than ETH ET24H
-1 that means that ET was underestimated for most of the days. The 

opposite happened when day cloudiness was higher than at the satellite time. For five 

upscaling dates, this relationship was significant (Table 4).  

In order to improve this up-scaling method, Eq. (12) could be modified to include a 

correction factor, which accounts for the error due to the self-preservation assumption 

(Van Niel et al. 2012). Other factors such as vapor pressure deficit should be taken into 

account to explain the variation in the fluxes ratio along the up-scaling period. 

Finally, when using the parabolic Kcinst curves the rMSE values for the 15-day period 

were similar to those obtained when using the global solar radiation up-scaling 

procedure (0.18 vs. 0.19, Table 3). However ET values obtained were better correlated 

with the Eddy Covariance ones (0.53 vs. 0.12), but the use of this up-scaling method 

requires that a previous study be conducted to obtain the monthly kc curves. Moreover, 

these curves are obtained for particular conditions that can vary over time. It should be 

highlighted that the SEBAL procedure here tested was validated in well watered trees. 

Theoretically SEBAL could also be used for obtaining ET under stress conditions, when 
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approaches for estimating crop coefficients from remotely sensed vegetation indices are 

not valid. Under plant water stress conditions, SEBAL could be employed for adjusting 

the Kc versus vegetation index relationships. Other factors, such as the time step in the 

availability of cloud-free images with thermal band and adequate spatial resolution, 

should be studied to assess their application in certain areas. The temporal availability 

of satellite imagery with thermal band determines the success of the application. Also 

the spatial resolution of the images is crucial for application in the management of citrus 

areas where the orchard’s size is small. Downscaling methods for remote sensing-based 

irrigation management should be assessed (Ha et al. 2012). 

 

4. Conclusions 

The SEBAL method was applied to a 400 ha farm of well irrigated mature citrus trees 

where energy fluxes were measured with Eddy Covariance. The momentum roughness 

length method that performed best was the Perrier function. To estimate crop height 

LIDAR data were used. Since LIDAR temporal resolution is low, empiric formulas 

relating crop height to some vegetation indices such as NDVI, LAI and ground cover 

should be studied. 

The use of LIDAR with the Perrier function resulted in a re-parameterized SEBAL 

model to determine more precisely citrus orchard sensible heat fluxes. SEBAL also 

performed well for net radiation calculations, but not for soil heat flux estimations.  

Three up-scaling methods were tested to extrapolate instantaneous ET to daily and to 

15-day periods. Good ET estimations were obtained for daily periods, which can be 

used for hydrology studies and also for irrigation management in large areas. For 15- 

day estimates, the up-scaling methods based on Kcinst parabolic curves and on the global 

radiation are the best suited. However, an advantage of the latter method is that it does 
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not require a previous estimation of the parabolic Kcinst curves, a feature that makes its 

implementation easier in other regions different from where the experiment was carried 

out. Indeed, for woody perennial crops such as citrus, with high coupling to the 

atmosphere and where the day-to-day ET to ETo relationships might change due to 

different VPD (Ballester et al. 2013), cloudiness (Van Niel et al. 2011) or other tree 

endogenous factors, it seems difficult to obtain precise mid-term (15 days) estimates of 

ET from a snapshot measurement taken in a given hour of a given day. Integration of 

this methodology with water balances will help to solve the aforementioned limitations 

(Allen and Pereira, 2009) and will improve the flux estimation when irrigation or 

precipitation has occurred in the hot pixels some days before the calculation (Allen et al 

2007b).  
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Table 3 Comparison of daily ET values (mm) estimated by SEBAL with those 

measured by Eddy Covariance (ETEC) or. Three upscaling procedures were used to 

obtain daily ET values from the snapshot measurement at the image acquisition time: 1) 

Assuming constant Kcinst (ETConstKc), 2) using global solar radiation as scaling factor 

(ETSolRad) and 3) using the parabolic Kc curves approach assuming (ETParabKc). The 

column RE shows the relative error between the daily ET determined by Eddy 

Covariance or SEBAL. rRMSE is relative Root Mean Square Error of the RE values 

and R2 is the coefficient of determination. Kc represents the daily crop coefficient 

obtained from Eddy Covariance data and the daily reference evapotranspiration (ETo). 

Table 4 Comparison of 15-day ET values (mm) estimated by SEBAL with those 

measured by Eddy Covariance (ETEC). Three upscaling procedures were used to obtain 

15 days ET values from the snapshot measurement at the image acquisition time 

estimated by SEBAL 1) Assuming constant Kcinst (ETConstKc), 2) using global solar 

radiation as scaling factor (ETSolRad) and 3) using the parabolic Kc curves approach 

(ETParabKc). The column RE shows the relative error between ET estimated by the 

different upscaling methods mentioned and ETEC for 15 days, rRMSE is the mean of the 
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RE square values and R2 is the coefficient of determination. Kc represents the average 

15 days crop coefficient value obtained from Eddy Covariance. NDCSat means the 

number of days in the upscaling period that had a ratio of global solar radiation and 

clear-sky solar lower than 0.3 at the satellite revisit time and NDCthe number of days 

that had a ratio lower than 0.3 for the whole day. R2
Biasis the coefficient of 

determination of the bias of hourly to daily ET ratio and the hourly to daily global solar 

radiation ratio and bias of hourly global solar radiation to the hourly clear-sky solar 

radiation at the image acquisition to daily global solar radiation to the daily clear-sky 

solar radiation.* means if R2
Biaswas linear regression of biases were statically 

significant. 
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Table 1 Reference evapotranspiration (ETo), actual crop evapotranspiration measured using Eddy Covariance (ETc), 

precipitation (Pr) and irrigation volumes applied (I) for the three studied seasons in the case study. Units for all 

volumes in mm. 

 

Year ETo ETc Pr I 

2008 748.7 383.2 649.0 353.9 

2009 1075.8 682.0 426.8 431.1 

2010 852.8 524.5 368.8 311.3 
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Table 2. Comparisons of the instantaneous fluxes estimated by SEBAL, Net Radiation (Rn_SEBAL), Sensible Heat (H_ 

SEBAL), Ground Heat (G_ SEBAL), Latent Heat (LE_ SEBAL), and corrected Latent Heat (LE_ SEBALc) with the 

corresponding values of Net Radiation (Rn_EC), Sensible Heat (H_EC), Ground Heat (G_EC) and Latent Heat (LE_EC) 

measured with Eddy covariance . Units for all fluxes are W m-2. Each pair of fluxes is compared by means of Relative 

Error (RE) and each RE column is summarized by the relative Root Mean Square Error (rRMSE) of the RE values. 

Path and Row are the code location for Landsat images. CR is the closure ratio of flux tower adjustment using the 

Bowen-Ratio method. 

DATE 
Path/Row 

Rn_EC Rn_SEBAL RE G_EC G_SEBAL RE H_EC H_SEBAL RE LE_EC LE_SEBAL RE LE_SEBAL_C 
RE CR 

19/06/08 
199, 33 

544 575 0.06 72.8 65.0 -0.11 313 333 0.06 158 176 0.11 167 0.06 
0.80 

15/08/08 
199, 33 

519 608 0.17 33.5 67.9 1.03 240 247 0.03 245 293 0.20 250 0.02 
0.87 

24/07/09 
199, 33 

604 574 -0.05 73.3 103.0 0.41 315 292 -0.07 215 179 -0.17 188 -0.13 
0.89 

03/09/09 
198, 33 

514 510 -0.01 42.5 87.8 1.07 253 210 -0.17 219 220 0.00 221 0.01 
0.81 

05/10/09 
198, 33 

411 445 0.08 32.2 48.7 0.51 145 148 0.02 233 249 0.07 230 -0.01 
0.67 

12/10/09 
199, 33 

382 475 0.24 23.3 48.4 1.08 137 187 0.36 222 240 0.08 193 -0.13 
0.86 

24/05/10 
199, 33 

616 600 -0.03 58.5 75.7 0.29 353 329 -0.07 204 195 -0.04 200 -0.02 
0.69 

11/07/10 
199, 33 

620 595 -0.04 49.2 92.0 0.87 334 293 -0.12 236 209 -0.11 218 -0.08 
0.62 

27/07/10 
199, 33 

613 610 0.00 19.1 77.1 3.04 331 301 -0.09 263 229 -0.13 230 -0.13 
0.66 

13/09/10 
199, 33 

502 499 -0.01 45.60 56.5 0.24 257 246 -0.04 201 198 -0.01 199 -0.01 
0.74 

 
 

 rRMSE 0.07  rRMSE 0.86  rRMSE 0.10  rRMSE 0.09 rRMSE 
0.06  
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Table 3 Comparison of daily ET values (mm) estimated by SEBAL with those measured by Eddy Covariance (ETEC) 

or. Three upscaling procedures were used to obtain daily ET values from the snapshot measurement at the image 

acquisition time: 1) Assuming constant Kcinst (ETConstKc), 2) using global solar radiation as scaling factor (ETSolRad) 

and 3) using the parabolic Kc curves approach assuming (ETParabKc). The column RE shows the relative error between 

the daily ET determined by Eddy Covariance or SEBAL. rRMSE is relative Root Mean Square Error of the RE 

values and R2 is the coefficient of determination. Kc represents the daily crop coefficient obtained from Eddy 

Covariance data and the daily reference evapotranspiration (ETo). 

DATE Kcinst Kc ETo ETEC ETConstKc REConstKc ETSolRad RESolRad ETParabKc REParabKc 

19/06/2008 0.34 0.53 5.36 2.83 1.85 -0.35 2.48 -0.12 2.44 -0.14 

15/08/2008 0.59 0.56 6.2 3.48 3.68 0.06 3.70 0.06 3.52 0.01 

24/07/2009 0.44 0.46 7.39 3.39 3.25 -0.04 3.18 -0.06 2.99 -0.12 

03/09/2009 0.54 0.57 5.93 3.37 3.22 -0.04 3.22 -0.04 2.92 -0.13 

05/10/2009 0.6 0.88 2.69 2.37 1.61 -0.32 2.74 0.16 2.32 -0.02 

12/10/2009 0.53 0.79 2.62 2.07 1.38 -0.33 2.35 0.14 2.27 0.10 

24/05/2010 0.44 0.57 5.27 3.03 2.3 -0.24 3.17 0.05 2.91 -0.04 

11/07/2010 0.42 0.53 5.73 3.02 2.43 -0.19 3.54 0.02 3.07 -0.03 

27/07/2010 0.59 0.6 5.68 3.44 3.36 -0.02 4.03 0.17 3.94 0.15 

13/09/2010 0.5 0.62 4.12 2.55 2.04 -0.2 2.68 0.05 2.53 -0.01 

 
rRMSE 0.18 rRMSE 0.09 rRMSE 0.08 

R2 0.90 R2 0.69 R2 0.7 
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Table 4 Comparison of 15-day ET values (mm) estimated by SEBAL with those measured by Eddy Covariance 

(ETEC). Three upscaling procedures were used to obtain 15 days ET values from the snapshot measurement at the 

image acquisition time estimated by SEBAL 1) Assuming constant Kcinst (ETConstKc), 2) using global solar radiation as 

scaling factor (ETSolRad) and 3) using the parabolic Kc curves approach (ETParabKc). The column RE shows the relative 

error between ET estimated by the different upscaling methods mentioned and ETEC for 15 days, rRMSE is the mean 

of the RE square values and R2 is the coefficient of determination. Kc represents the average 15 days crop coefficient 

value obtained from Eddy Covariance. NDCSat means the number of days in the upscaling period that had a ratio of 

global solar radiation and clear-sky solar lower than 0.3 at the satellite revisit time and NDCthe number of days that 

had a ratio lower than 0.3 for the whole day. R2
Biasis the coefficient of determination of the bias of hourly to daily ET 

ratio and the hourly to daily global solar radiation ratio and bias of hourly global solar radiation to the hourly clear-

sky solar radiation at the image acquisition to daily global solar radiation to the daily clear-sky solar radiation.* 

means if linear regression of biases were statically significant. 

DATE Kc ETEC ETConstKc REConstKc ETSolRad RESolRad ETParabKc REParabKc NDCSat NDC R2
Bias 

19/06/2008 0.58 45.84 27.12 -0.41 34.92 -0.24 30.91 -0.33 0 0 0.54* 

15/08/2008 0.74 44.64 36.92 -0.17 59.71 0.33 42.79 -0.04 1 1 0.55* 

24/07/2009 0.52 38.74 45.03 0.16 48.80 0.26 39.62 0.02 0 0 0.53* 

03/09/2009 1.01 45.52 26.35 -0.42 53.15 0.17 33.65 -0.26 2 1 0.44* 

05/10/2009 1.08 32.63 18.68 -0.43 45.92 0.38 26.47 -0.21 2 1 0.14 

12/10/2009 1.13 33.51 17.91 -0.47 36.31 0.12 24.54 -0.28 2 1 0.02 

24/05/2010 0.83 57.87 30.86 -0.47 49.47 -0.15 41.88 -0.28 0 0 0.14 

11/07/2010 0.74 53.7 31.97 -0.4 50.77 -0.04 54.78 0.02 0 0 0.54* 

27/07/2010 0.73 50.3 40.97 -0.19 53.11 0.06 50.39 0.00 0 0 0.05 

13/09/2010 0.98 46.08 23.54 -0.49 38.86 -0.16 31.92 -0.31 0 2 0.02 

 rRMSE 0.36 rRMSE 0.19 rRMSE 0.18    

R2 0.15 R2 0.12 R2 0.53    

 

 

 

 


