32 research outputs found

    Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function

    Get PDF
    ntroduction: The bile salt export pump (BSEP/ABCB11), residing in the apical membrane of hepatocyte, mediates the secretion of bile salts into the bile. A range of human diseases is associated with the malfunction of BSEP, including fatal hereditary liver disorders and mild cholestatic conditions. Manifestation of these diseases primarily depends on the mutation type; however, other factors such as hormonal changes and drug interactions can also trigger or influence the related diseases. Areas covered: Here, we summarize the recent knowledge on BSEP by covering its transport properties, cellular localization, regulation and major mutations/polymorphisms, as well as the hereditary and acquired diseases associated with BSEP dysfunction. We discuss the different model expression systems employed to understand the function of the BSEP variants, their drug interactions and the contemporary therapeutic interventions. Expert opinion: The limitations of the available model expression systems for BSEP result in controversial conclusions, and obstruct our deeper insight into BSEP deficiencies and BSEP-related drug interactions. The knowledge originating from different methodologies, such as clinical studies, molecular genetics, as well as in vitro and in silico modeling, should be integrated and harmonized. Increasing availability of robust molecular biological tools and our better understanding of the mechanism of BSEP deficiencies should make the personalized, mutation-based therapeutic interventions more attainable

    Lipid Regulation of the ABCB1 and ABCG2 Multidrug Transporters

    Get PDF
    This chapter deals with the interactions of two medically important multidrug ABC transporters (MDR-ABC), ABCB1 and ABCG2, with lipid molecules. Both ABCB1 and ABCG2 are capable of transporting a wide range of hydrophobic drugs and xenobiotics and are involved in cancer chemotherapy resistance. Therefore, the exploration of their mechanism of action has major therapeutic consequences. As discussed here in detail, both ABCB1 and ABCG2 are significantly affected by various lipid compounds especially those residing in their close proximity in the plasma membrane. ABCB1 is capable of transporting lipids and lipid derivatives, and thus may alter the general membrane composition by "flopping" membrane lipid constituents, while there is no such information regarding ABCG2. Still, both ABCB1 and ABCG2 show complex interactions with a variety of lipid molecules, and the transporters are significantly modulated by cholesterol and cholesterol derivatives at the posttranslational level. In this chapter, we explore the molecular details of the direct transporter-lipid interactions, the potential role of lipid-sensor domains within the proteins, as well as the application of experimental site-directed mutagenesis, detailed structural studies, and in silico modeling for examining these interactions. We also discuss the regulation of ABCB1 and ABCG2 expression at the transcriptional level, occurring through nuclear receptors involved in lipid sensing. The better understanding of lipid interactions with these medically important MDR-ABC transporters may significantly improve further drug development and clinical treatment options

    A KIRÁLYERDƐ KARSZTVIDÉKE: MORFOLÓGIAI KÉRDÉSEK ÉS ÉLET A KARSZTON

    Get PDF
    Pădurea Craiului Mts is the northwestern part of Apuseni Mts. 40% of its circa 780 km2 area is built up of karstifiable rocks that makes it the terrain richest in superficial and underground karst landforms in Transylvania. Based on topographic map analysis we counted 2289 dolines, and delineated doline-dominated terrains, where doline density ranges from 2 to 30 dolines per km2. We also performed a field GPS survey of 3 smaller study areas, and our results show that real doline density is 1.5-2.5 times higher than the value calculated from the 1:25 000 scale topographic map, and deviations are more significant in forest-covered terrains. By using the 1” SRTM digital elevation models, we studied the relationship of topography and geological units, the inclination of the trend surface and the characteristics of the drainage network. As large part of the Pădurea Craiului Mts is mixed karst, there are extended non-karstic patches even on the higher terrains, where springs and smaller streams exist. Thus, these terrains are suitable for the formation of settlements, that is a significant difference with respect to many autogeneous karst plateaus. There are some linear (e.g. DamiƟ) and dispersed (e.g. Zece Hotare) settlements at the higher kartsic terrains of Pădurea Craiului Mts, but many people live along the spring line at the foot of the karstic hills. Based on semi-structured interviews with local people we found that they are more or less aware of living on a karst, they know the relationship between sinkholes and springs, however they often use natural depressions as garbage places. Their living is based firstly on traditional agriculture, which is still the most important but declining resource; secondly on mining of bauxite and refractory clay, but mines ceased to work after the change of regime; and thirdly on tourism. This latter is considered to be a breaking point and recent investments are apparent (e.g. restoration of asphalt roads, opening of new or restored show caves /e.g. Farcu Crystal Cave/, new guesthouses), however its infrastructure is still under-developed and its carrying capacity is low, thus the depopulation of Pădurea Craiului Mts is an ongoing process

    Fluorescent probes for the dual investigation of MRP2 and OATP1B1 function and drug interactions

    Get PDF
    Detoxification in hepatocytes is a strictly controlled process, in which the governed action of membrane transporters involved in the uptake and efflux of potentially dangerous molecules has a crucial role. Major transporters of hepatic clearance belong to the ABC (ATP Binding Cassette) and Solute Carrier (SLC) protein families. Organic anion-transporting polypeptide OATP1B1 (encoded by the SLCO1B1 gene) is exclusively expressed in the sinusoidal membrane of hepatocytes, where it mediates the cellular uptake of bile acids, bilirubin, and also that of various drugs. The removal of toxic molecules from hepatocytes to the bile is accomplished by several ABC transporters, including P-glycoprotein (ABCB1), MRP2 (ABCC2) and BCRP (ABCG2). Owing to their pharmacological relevance, monitoring drug interaction with OATP1B1/3 and ABC proteins is recommended. Our aim was to assess the interaction of recently identified fluorescent OATP substrates (various dyes used in cell viability assays, pyranine, Cascade Blue hydrazide (CB) and sulforhodamine 101 (SR101)) (Bakos et al., 2019; Patik et al., 2018) with MRP2 and ABCG2 in order to find fluorescent probes for the simultaneous characterization of both uptake and efflux processes. Transport by MRP2 and ABCG2 was investigated in inside-out membrane vesicles (IOVs) allowing a fast screen of the transport of membrane impermeable substrates by efflux transporters. Next, transcellular transport of shared OATP and ABC transporter substrate dyes was evaluated in MDCKII cells co-expressing OATP1B1 and MRP2 or ABCG2. Our results indicate that pyranine is a general substrate of OATP1B1, OATP1B3 and OATP2B1, and we find that the dye Live/Dead Violet and CB are good tools to investigate ABCG2 function in IOVs. Besides their suitability for MRP2 functional tests in the IOV setup, pyranine, CB and SR101 are the first dual probes that can be used to simultaneously measure OATP1B1 and MRP2 function in polarized cells by a fluorescent method. © 2020 The Author(s

    Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter

    Get PDF
    AbstractThe human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity

    A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions

    Get PDF
    ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters

    Characterization of new, efficient Mycobacterium tuberculosis topoisomerase-I inhibitors and their interaction with human ABC multidrug transporters

    Get PDF
    Drug resistant tuberculosis (TB) is a major worldwide health problem. In addition to the bacterial mechanisms, human drug transporters limiting the cellular accumulation and the pharmacological disposition of drugs also influence the efficacy of treatment. Mycobacterium tuberculosis topoisomerase-I (MtTopo-I) is a promising target for antimicrobial treatment. In our previous work we have identified several hit compounds targeting the MtTopo-I by in silico docking. Here we expand the scope of the compounds around three scaffolds associated with potent MtTopo-I inhibition. In addition to measuring the effect of newly generated compounds on MtTopo-I activity, we characterized the compounds' antimicrobial activity, toxicity in human cells, and interactions with human multidrug transporters. Some of the newly developed MtTopo-I inhibitors have strong antimicrobial activity and do not harm mammalian cells. Moreover, our studies revealed significant human ABC drug transporter interactions for several MtTopo-I compounds that may modify their ADME-Tox parameters and cellular effects. Promising new drug candidates may be selected based on these studies for further anti-TB drug development
    corecore