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Abstract

This chapter deals with the interactions of two medically important ABC multidrug
transporters (MDR-ABC), ABCB1 and ABCG2, with lipid molecules. Both ABCB1 and
ABCG2 are capable of transporting a wide range of hydrophobic drugs and xenobiotics
and are involved in cancer chemotherapy resistance. Therefore, the exploration of their
mechanism of action has major therapeutic consequences. As discussed here in detail,
both ABCB1 and ABCG2 are significantly affected by various lipid compounds especially
those residing in their close proximity in the plasma membrane. ABCB1 is capable of
transporting lipids and lipid derivatives, and thus may alter the general membrane com-
position by “flopping”membrane lipid constituents, while there is no such information
regarding ABCG2. Still, both ABCB1 and ABCG2 show complex interactions with a variety
of lipid molecules, and the transporters are significantly modulated by cholesterol and
cholesterol derivatives at the posttranslational level. In this chapter, we explore the
molecular details of the direct transporter–lipid interactions, the potential role of
lipid-sensor domains within the proteins, as well as the application of experimental
site-directed mutagenesis, detailed structural studies, and in silico modeling for exam-
ining these interactions. We also discuss the regulation of ABCB1 and ABCG2 expression
at the transcriptional level, occurring through nuclear receptors involved in lipid sens-
ing. The better understanding of lipid interactions with these medically important
MDR-ABC transporters may significantly improve further drug development and clinical
treatment options.

st0015 ABBREVIATIONS
dt0005 CHAPS Au33-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

dt0010 CMC Au4critical micelle concentration

dt0015 DMPE 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine

dt0020 DPPE 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

dt0025 ESR electron spin resonance

dt0030 β-MCD β-methyl cyclodextrane

dt0035 MDR-ABC multidrug resistance ATP-binding Cassette

dt0040 NMR nuclear magnetic resonance

dt0045 PC phosphatidylcholine

dt0050 PE phosphatidylethanolamine

dt0055 SDS sodium dodecyl sulfate

s0005 1. INTRODUCTION—THE COMPLEX INTERACTIONS OF
LIPIDS AND ABC MULTIDRUG TRANSPORTERS

p0060 The subjects of this chapter are the interactions of two clinically

important ABC multidrug (MDR-ABC) transporters, ABCB1 (P-gp/

MDR1) and ABCG2 (ABCP/BCRP/MXR), with their membrane lipid
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environment and other lipid molecules. Since several chapters in this book

present detailed descriptions of MDR-ABC transporters, here we only

shortly summarize their main features.

p0065 Both ABCB1 and ABCG2 are glycosylated integral plasma membrane

proteins which are involved in the cellular extrusion of a large variety of

xenobiotics and endobiotics. These ATP-dependent transporters contain

large transmembrane domains (TMDs) composed of alpha helices and sim-

ilarly to all other ABC transporters, cytoplasmic nucleotide-binding

domains (NBDs). In a general mechanism of action, the binding and hydro-

lysis of ATP in the NBDs provide the energy for drug or xenobiotic extru-

sion through the transmembrane regions of the protein. ABCB1 has been

the first recognized plasmamembrane multidrug transporter, which contains

2 NBDs and 2 TMDs with altogether 12 transmembrane helices within 1

polypeptide chain. The ABCG2 protein was discovered only about 15 years

ago and is a “half ABC transporter” containing only one TMD consisting of

six transmembrane helices and one NBD. The functional form of ABCG2

has been shown to be a homodimer or homo-oligomer (Bhatia, Schafer, &

Hrycyna, 2005; Ni, Mark, Cai, & Mao, 2010; Ozvegy et al., 2001; Xu, Liu,

Yang, Bates, & Zhang, 2004).

p0070 Both of these transporters have a “promiscuous” capacity of recognizing

a large number of transported substrates. The ABCB1 protein transports

mostly hydrophobic or positively charged amphipathic molecules, while

the substrate specificity of the ABCG2 transporter is even wider and includes

entirely hydrophobic toxic compounds, amphiphilic positively or negatively

charged, as well as practically water-soluble molecules. Besides their capa-

bility of transporting various therapeutic drugs, these MDR-ABC trans-

porters also play an important physiological role in cellular and systemic

detoxification and are key members of the xenobiotic or the so-called

chemoimmunity defense system of the body (Sarkadi, Homolya,

Szakacs, & Varadi, 2006; Sarkadi, Muller, &Hollo, 1996). Besides its general

protective role, ABCB1 is currently not known to transport any specific

physiological substrates. In contrast, ABCG2 has recently been shown to

be an efficient uric acid transporter and thus plays an important role in urate

metabolism. Polymorphic ABCG2 variants are strongly implicated in the

development of gout (Woodward et al., 2009).

p0075 Both ABCB1 and ABCG2 are preferentially expressed in various tissue

barriers and in the apical/luminal membranes of polarized cells. In cancer

cells, the expression of these MDR-ABC transporters results in cross-

resistance (or multidrug resistance, MDR) against a wide range of
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chemotherapeutic drugs, including practically all available anticancer agents

that have to cross the cell membrane to reach their intracellular targets.

Moreover, normal and cancer stem cells express ABCG2 (and in some cases

ABCB1), and this expression pattern may be an important factor in the

inherent chemotherapy resistance of cancer stem cells.

p0080 As mentioned above, both ABCB1 and ABCG2 reside in the plasma

membrane and in polarized cells are recruited into the apical (luminal) mem-

branes. The mammalian plasma membrane has a complex structure of sev-

eral lipid species in which selected lipids may preferentially surround

membrane proteins. Membrane lipids are known to greatly affect the struc-

ture and function of a number of membrane proteins, especially those inter-

acting with hydrophobic or amphipathic substrates. Even in the cases of

those membrane proteins, e.g., ion channels or hormone receptors, when

the ligands are hydrophilic species, protein conformational changes are

required to transmit the messages or ions through the membrane environ-

ment, and the energetics and speed of this information or material transfer

may be greatly affected by lipid interactions (Laganowsky et al., 2014;

Phillips, Ursell, Wiggins, & Sens, 2009). Basic categories of these physical

and/or chemical interactions are summarized in (Fig. 1). The membrane

effects on integral proteins are amplified by the formation of various lipid

microdomains, depending on lipid compositions, temperature, and

membrane-associated (e.g., cytoskeletal) proteins.

p0085 The annular lipid regions around transmembrane regions of membrane

proteins may directly modulate their activities. The special membrane

domains showing different lipid and protein associations, in most cases
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enriched in sphingomyelin (SM) and cholesterol are often called lipid rafts.

In biological membranes, in contrast to unsaturated glycerophospholipids,

SMs in the outer plasma membrane leaflet in many cases have stretched con-

formations, and this SM conformation allows more intimate contacts with

cholesterol. Also, the larger headgroup of SM may shield the hydrophobic

part of cholesterol fromwater; thus, SM and cholesterol may become closely

packed in a partially ordered phase (Ohvo-Rekila, Ramstedt, Leppimaki, &

Slotte, 2002; vanMeer, Voelker, & Feigenson, 2008). The definition of such

lipid rafts is quite variable and sometimes controversial (Mayor &Rao, 2004;

Munro, 2003; Simons & Gerl, 2010)—biochemists and cell biologists have

somewhat different approaches in this regard. Biochemists regard lipid rafts

as the membrane fractions which are insoluble or less soluble in nonionic

detergents, e.g., Triton X-100, CHAPS, Brij 96, or Lubrol WX

(London & Brown, 2000), although even these different detergents produce

variable “raft” fractions. In this regard, Brij 96 and Lubrol WX have milder

solubilizing potential than Triton X-100 (Schuck, Honsho, Ekroos,

Shevchenko, & Simons, 2003); thus, “Lubrol rafts” may contain different

membrane lipids and proteins than “Triton rafts.” Cell biologists are more

concerned about close proximity selective protein interactions, observed in

20–100 nm wide dynamically organized membrane regions under various

functional conditions, including membrane trafficking, receptor-dependent

signal transduction, channel formation, or substrate transport (see Fig. 1).

p0090 As agreed by both the biochemistry and cell biology approaches, lipid rafts

in the plasma membranes contain most of the glycosylphosphatidylinositol-

anchoredproteins, gangliosides, and flotillin andmaypull together a varietyof

proteins involved in the signal transduction machinery (Pike, 2003).

A specialized type of raft domains is the caveola, characterized by membrane

invaginations stabilized by a hairpin-likemembrane protein, caveolin. Cyto-

skeletal elements at the internal membrane surface may stabilize the rafts and

the included integralmembraneproteins, and such a “membrane scaffold”has

been implicated in numerous membrane protein functions.

p0095 Both ABCB1 and ABCG2 have been reported to reside in detergent-

insoluble rafts (Ismair et al., 2009; Orlowski, Martin, & Escargueil, 2006;

Radeva, Perabo, & Sharom, 2005; Storch, Ehehalt, Haefeli, & Weiss,

2007) and in close interaction with cholesterol and caveolin. In the canalic-

ular membranes of hepatocytes, several ABC transporters, including ABCB4

(MDR3), ABCB11 (BSEP, S-P-gp), ABCC2 (MRP2), and ABCG5/G8,

have also been shown to reside in raft domains (Ismair et al., 2009). The

properties of transmembrane regions of ABC transporters, such as the length
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of transmembrane helices and/or the interaction of transmembrane helices

with cholesterol, may actually favor the localization of these proteins in the

raft domains.

p0100 It is important to note that ABCB1 is in a mutual relationship with its

membrane environment, that is, not only the membrane lipids alter the

function of ABCB1 but this protein may actively modify its lipid environ-

ment (for reviews, see Denning & Beckstein, 2013; Orlowski et al., 2006;

Peetla, Vijayaraghavalu, & Labhasetwar, 2013; Pohl, Devaux, & Herrmann,

2005; Sharom, 2014). ABCG2 is less characterized in this respect, but lipid

interactions certainly affect its function.

p0105 In studying the lipid regulation of ABC membrane transporters, the

selection of proper assay systems is a major hurdle. Since MDR-ABC trans-

porters have key interactions with a wide range of hydrophobic toxins and

drugs, it is inherently difficult to analyze the lipid effects on the actual sub-

strate transport pathway or on the general conformation and activity of the

protein. Clearly, membrane lipid constituents, especially cholesterol, may

act both ways. In whole cell assays, studying drug resistance or direct

drug/xenobiotic extrusion, lipid modulation may be easily recognized by

the altered function of the transporter, but lipid modifications have to be

properly controlled not to cause a general damage of the plasma membrane

composition. Lipid enrichment or extraction methods thought to be selec-

tive may result in a nonspecific permeabilization or a general disruption of

the lipid rafts and/or the associated cytoskeletal elements.

p0110 The key functional assays in isolated cell membrane preparations involve

the measurement of substrate-stimulated ATPase activity and the direct

transport activity of ABCB1 or ABCG2. Although coupling between the

ATPase and drug transport activity is well established, both ABCB1 and

ABCG2 have significant basal ATPase activities even in the absence of drug

substrates. The nature of this basal ATPase activity has not been properly

established. Direct determination of the vesicular uptake of radiolabeled

or fluorescent substrates into inverted membrane vesicles may overcome this

problem. For vesicular transport studies, the lipid-dependent tight sealing of

the vesicles is essential and may be significantly altered by lipid modifica-

tions. Both transporters have a well measurable function especially when

expressed in insect cells, capable of generating large amounts of functional,

membrane-inserted proteins. However, mammalian cell membranes have

five to eight times higher cholesterol levels than the insect cell membranes,

whichmay significantly alter ABC transporter activity. A relatively mild way

of reducing or increasing cell membrane lipids, especially cholesterol, is the
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incubation of the cells with “empty” or lipid-complexed cyclodextrin com-

pounds (Telbisz et al., 2007; Zidovetzki & Levitan, 2007).

p0115 Another suitable assay system for analyzing the ABC transporter and lipid

interactions is based on the preparation of isolated and reconstituted pro-

teins. In this case, the modulation of the lipid composition used for recon-

stitution allows a direct estimation of the lipid effects. However, these

methods are inherently difficult to perform and the activity of the purified

ABC transporter may be significantly affected by the remaining detergent or

lipid content of the reconstituted proteoliposomes (Decottignies,

Kolaczkowski, Balzi, & Goffeau, 1994; Mao, Deeley, & Cole, 2000;

Telbisz et al., 2007).

s0010 2. EFFECTS OF LIPIDS ON THE FUNCTION OF ABCB1
AND ABCG2

s0015 2.1. Localization of ABCB1 and ABCG2 in specialized
membrane domains

p0120 Since the cholesterol–SM-rich “raft” regions are heterogeneous in compo-

sition, size, and timescale of existence (see Section 1), the association of

ABCB1 and ABCG2 with these regions has been examined by a number

of methods.

p0125 ABCB1 has been reported to reside in Triton X-100-resistant rafts

(Ismair et al., 2009; Orlowski et al., 2006) or in Brij 96-resistant rafts

(Radeva et al., 2005), although ABCB1 was found to be an active drug

transporter both in raft and in nonraft regions (Bucher, Besse, Kamau,

Wunderli-Allenspach, & Kramer, 2005). Still, recent studies, examining

the ratio of active state conformations of ABCB1 by the conformation sen-

sitive UIC2 antibody, indicate that this protein may be more active in

cholesterol-rich, caveolin-positive regions and thus may be regulated by fac-

tors altering raft assembly (Bacso et al., 2004). Treatment of cells by

β-methyl cyclodextrin (β-MCD) for cholesterol depletion or the application

of cholesterol-loaded β-MCD for cholesterol enrichment was reported to

modify the transport functions of ABCB1 in several experiments, but in

other reports, no significant effects were observed (Luker, Pica, Kumar,

Covey, & Piwnica-Worms, 2000; Telbisz et al., 2007). This conditional

effect may be dependent on the cell-type and transported substrates exam-

ined. Moreover, the application of high concentrations of β-MCD may

cause significant nonspecific membrane alteration effects and toxicity.
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p0130 ABCG2 was found in Triton X-100-insoluble lipid rafts in close inter-

action with cholesterol and caveolin (Storch et al., 2007). As discussed

below, in the case of ABCG2, cholesterol is an essential modulator of the

transport activity; thus, raft localization may be advantageous for its proper

functioning.

p0135 Most intracellular membranes contain relatively low levels of cholesterol;

thus, ABCB1 and ABCG2 transporter activity may be significantly lower

during membrane protein processing and traveling from the ER and Golgi

to the plasma membrane. Moreover, the apical membranes of polarized cells

contain significantly more cholesterol-rich microdomains (Simons & Gerl,

2010) than the basolateral regions, and this unequal cholesterol distribution

may also result in large differences in transporter activity. Since both ABCB1

and ABCG2 are localized in the apical–luminal compartments in polarized

tissue regions (e.g., in the liver canalicular membranes, in the intestinal or

kidney epithelia), specific local interactions may be important factors in

the lipid regulation of transporter activity in these regions.

s0020 2.2. Substrate handling of ABCB1 and ABCG2 and the role
of membrane lipids

p0140 Hydrophobic molecules accumulate in the lipid phase of the cellular mem-

branes and achieve much higher concentrations within the membranes than

in the cytoplasmic or extracellular water phases. Cholesterol, in addition to

stabilizing membrane structures, may further increase lipid insertion of

hydrophobic drugs or xenobiotics. In addition, amphiphilic, positively

charged drug compounds, e.g., doxorubicin, mitoxantrone, or verapamil,

interact with negatively charged lipid headgroups, while the hydrophobic

parts of these drugs interact with apolar membrane regions (Siarheyeva,

Lopez, & Glaubitz, 2006; Speelmans, Staffhorst, De Wolf, & De Kruijff,

1995). Therefore, membrane lipids might significantly affect the plasma

membrane concentrations and availability of ABCB1 or ABCG2 substrates.

p0145 Practically all of the ABCB1 and most of the ABCG2 substrates are

lipophilic/amphiphilic compounds, and it is by nowwell accepted that these

transporters may gain access to their hydrophobic substrates directly in the

membrane lipid phase (Coleman, Quazi, & Molday, 2013; Sharom, 2014).

Several experimental results indicate that ABCB1 binds its drug substrates

within the plasma membrane and most probably in the inner leaflet of

the plasma membrane (Clay & Sharom, 2013; Higgins & Gottesman,

1992; Sharom, 1997). Drug partitioning into the lipid membrane and drug

binding to ABC multidrug transporters show close correlation (Clay &
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Sharom, 2013; Romsicki & Sharom, 1999). FRET studies, applying a fluo-

rescent substrate drug (doxorubicin) of ABCB1 and a lipophilic fluorescent

compound (iodonaphtalen-1-azide) that can be directly attached to ABCB1

through photoaffinity labeling, indicated drug binding to the transporter

within the lipid phase (Raviv, Pollard, Bruggemann, Pastan, &

Gottesman, 1990).

p0150 In addition, several experimental results imply that both ABCB1 and

ABCG2 can expel extracellularly added hydrophobic compounds from

the cells before these compounds would reach the cytoplasm. In one of these

approaches, ABCB1 was shown to reduce the cellular accumulation of fluo-

rescent indicator dyes. These compounds (e.g., Quin-2, Indo-1, or Fluo-4)

are usually added to the cells in a nonfluorescent acetoxymethylester (AM)

form, and then intracellular esterases produce the fluorescent, free dye com-

pounds. It has been observed that when the ABCB1 protein is expressed in

the cell membrane, the fluorescent dye accumulation is strongly reduced

because the transporter removes the AM compound from the membrane

before the cytoplasmic esterases could produce the fluorescent free dye

(Homolya et al., 1993). Moreover, the active extrusion of calcein-AM, a

dye used earlier as a viability indicator (the free calcein fluorescence is insen-

sitive to cellular ionic environment or pH), allowed the development of a

highly sensitive fluorescent assay for measuring cellular ABCB1 transport

activity (Hollo, Homolya, Davis, & Sarkadi, 1994; Homolya, Hollo,

Muller, Mechetner, & Sarkadi, 1996; Homolya et al., 1993).

p0155 Another detailed study of ABCG2 activity documented that

mitoxantrone, a cytotoxic agent that is highly fluorescent in the lipid phase,

accumulates in the cell membrane but this accumulation is strongly reduced

by the presence and activity of ABCG2. Mathematical modeling based on

detailed cellular microscopy fluorescence measurements further supported a

direct extrusion of mitoxantrone by ABCG2 from the membrane phase

(Homolya, Orban, Csanady, & Sarkadi, 2011).

p0160 Thus, hydrophobic drugs are most probably extruded by ABCB1 and

ABCG2 from the plasma membrane. Two transport models have been pro-

posed to describe this phenomenon, the so-called hydrophobic vacuum

cleaner and the flippase models (see Fig. 2 and Higgins & Gottesman,

1992). In both models, the transported substrate is recognized within the

membrane; however, while according to the “vacuum cleaner” model

the substrate is released to the extracellular water phase, the flippase model

(in recent times modified to “floppase,” based on its outward direction) sug-

gests that drugs are only “flopped” by the transporter from the inner to the
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outer membrane leaflet and then either diffuse to the extracellular water

phase or remain in the outer membrane leaflet. In fact, a significant enrich-

ment in the outer membrane leaflet and a large outward substrate gradient

may produce the same extrusion effect than a direct transport to the extra-

cellular fluid. In the future, a more detailed knowledge on the atomic level

structure of the transporters may help to distinguish between these molec-

ular mechanisms of action.

s0025 2.3. Modulation of ABCB1 and ABCG2 function by lipids,
lipid derivatives, and detergents

p0165 The transport functions of ABCB1 and ABCG2 are significantly affected by

membrane lipids especially by cholesterol, as well as lipid derivatives and

detergent compounds. ABCB1 in fact is able to transport (or flop) various

membrane phospholipids and lipid derivatives (van Helvoort et al., 1996).

There are no available data for phospholipid or phospholipid-derivative
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transport by ABCG2, while cholesterol has been shown to display a signif-

icant effect on this transporter. Still, due to technical limitations, in most

cases, it is difficult to clarify whether a lipid compound is a modulator or

a transported substrate of these MDR-ABC proteins. In many cases, even

direct lipid or detergent interactions cannot be distinguished from indirect

effects, caused by the alteration of the general membrane properties.

p0170 In this chapter, we focus on the interactions of cholesterol and its main

derivatives with ABCB1 and ABCG2.However, it is also worthmentioning

that several steroid hormones and hormone metabolites have been shown to

be transported substrates of these proteins. ABCB1 was indicated to trans-

port progesterone and aldosterone (Kim & Benet, 2004; Ueda et al., 1992),

while ABCG2 is an efficient transporter for hormone derivatives, including

estradiol sulfate and estradiol glucuronide (Suzuki, Suzuki, Sugimoto, &

Sugiyama, 2003).

p0175 Cholesterol depletion of the cell membranes has been reported to

decrease both ABCB1 and ABCG2 function (Storch et al., 2007; Troost,

Lindenmaier, Haefeli, & Weiss, 2004). For assessing a direct modulation

of these transporters by membrane cholesterol, various functional assays

should be combined, e.g., measurement of vanadate-sensitive, basal, or

drug-stimulated ATPase activity, direct drug transport in isolated mem-

branes, or combined ATPase and transport activity by isolated and rec-

onstituted proteins (see Section 1).

p0180 ABCB1 is most probably not directly involved in cholesterol transport

(Tarling, de Aguiar Vallim, & Edwards, 2013), and studies for the cholesterol

modulation of the transporter yielded variable results. ABCB1 ATPase

activity was measured in most cases in native membranes prepared from

ABCB1-overexpressing cells. While the basal ATPase activity of ABCB1

was increased by cholesterol, the substrate-stimulated activity was less mod-

ified (Belli, Elsener, Wunderli-Allenspach, & Kramer, 2009; Bucher, Belli,

Wunderli-Allenspach, & Kramer, 2007). In addition, in the case of smaller

size drug substrates, cholesterol had a much greater influence on the

substrate-dependent ABCB1-ATPase activity than in the case of larger drug

substrates (Kimura, Kioka, Kato, Matsuo, & Ueda, 2007). Thus, the func-

tion of ABCB1 seems to be relatively insensitive to changes in the choles-

terol content of the plasma membrane and the effects of cholesterol largely

depend on the size of the transported substrate (see in detail in Section 4.1.2).

p0185 Although several close relatives in the ABCG subfamily are involved in

steroid transport (ABCG1 transports cholesterol and the ABCG5/G8

heterodimer transports plant sterols), ABCG2 is probably not an active
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cholesterol transporter (Kimura, Kodan, Matsuo, & Ueda, 2007), and no

ABCG2 defects have been associated with cholesterol metabolic diseases.

Still, cholesterol has a major modulatory effect on ABCG2 activity.

p0190 When ABCG2 is expressed in cholesterol-poor insect cell membranes,

the addition of cholesterol in the form of a complex with β-MCD signifi-

cantly stimulates both drug transport and ATPase activity (Pal et al., 2007;

Telbisz et al., 2007). The addition of other sterol compounds, e.g., sitosterol

or ergosterol, has similar effect, although the most effective modulator in

lower concentrations is cholesterol (Telbisz et al., 2007). Experiments per-

formed using isolated ABCG2 strongly indicate that cholesterol or other

membrane sterols are essential cofactors influencing ABCG2 function. In

the case of isolated and reconstituted ABCG2, both ATPase and transport

activity have been shown to be very low in a membrane lipid environment

lacking cholesterol (Telbisz, Ozvegy-Laczka, Hegedus, Varadi, & Sarkadi,

2013). Cholesterol has been shown to increase the basal ATPase activity

of ABCG2 in a concentration-dependent manner; moreover, stimulation

of the ABCG2-ATPase activity by transporter substrates could only be

achieved in the presence of cholesterol (Telbisz et al., 2013).

p0195 The major cholesterol derivatives in the human body are bile salts, and in

some tissues, e.g., in the liver and the intestine, where bile salt concentra-

tions are relatively high, these compounds may significantly affect ABC

transporter function. Since bile acids and derivatives also have strong deter-

gent activity, this feature may also be involved in their functional effects.

p0200 A close homologue of ABCB1, ABCB11 (BSEP/S-P-gp), is the main

bile acid transporter in the liver canalicular membrane, while ABCB1 has

not been shown to be involved in bile acid transport. Substrate transport

by ABCB1 has been reported to be inhibited by bile acids (Mazzanti

et al., 1994), but the detergent effects of bile acids may also explain this

phenomenon.

p0205 The function of ABCG2has been shown to be significantlymodulated by

bile salts and detergents with chemical structures resembling to bile salts (e.g.,

CHAPS) (Telbisz, Hegedus, Varadi, Sarkadi, & Ozvegy-Laczka, 2014;

Telbisz et al., 2013). In isolated ABCG2-containing membranes or in rec-

onstitutedABCG2proteoliposomes, bile salts applied inmuch lowerconcen-

trations than the potential detergent effects strongly decreased the basal

ABCG2-ATPase activitywhilenot affecting the substrate-stimulatedATPase

activity in the presence of cholesterol (Telbisz et al., 2014). Experiments

detailed below indicate that both cholesterol and bile acidsmodulateABCG2

function independently of interacting with the substrate transport sites.
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p0210 Regarding potential bile salt transport by ABCG2, the experimental

results are contradictory. ABCG2 expressed in Lactococcus lactis showed

higher ATPase activity in the presence of certain bile salts and caused aminor

bacterial resistance against bile salt toxicity ( Janvilisri, Shahi, Venter,

Balakrishnan, & van Veen, 2005). In CHO cells, coexpression of rat

Oatp1a1 and human ABCG2 enhanced both the uptake and the efflux of

a fluorescent conjugated bile acid, cholyl-glycylamido-fluorescein, cholic

acid (CA), glycoCA, tauroCA, and taurolithocholic acid-3-sulfate

(Blazquez et al., 2012). In contrast, in our experiments using human

ABCG2-expressing isolated insect membranes, we could not detect any

ATP-dependent vesicular accumulation of radiolabeled bile acids. Under

the same experimental conditions, we could measure substantial vesicular

transport by the known professional bile acid transporters, ABCC2

(MRP2) and ABCB11 (BSEP/S-P-gp) (Telbisz et al., 2014).

p0215 Detergents, by disrupting hydrophobic protein interactions with mem-

brane lipids, in most cases, inhibit ABCB1 and ABCG2 function. Strong

ionic detergents, such as SDS, may irreversibly destroy transporter function.

Still, some nonionic detergents, such as Triton X-100 or C12EO8, below

their CMC concentrations, have been indicated to be transported substrates

of ABCB1 and possibly bind to the drug-binding site of the protein (Beck

et al., 2013; Li-Blatter, Nervi, & Seelig, 2009; Seelig & Gerebtzoff, 2006;

Zordan-Nudo, Ling, Liu, & Georges, 1993). Bile acids and related com-

pounds (e.g., CHAPS) modify ABCG2 transporter function below the con-

centrations causing detergent effects, while some potentially “mild”

detergents may have serious adverse effects. Since functional ABCG2 is a

homodimer, a detergent-induced dissociation of the ABCG2 dimer has

been shown to irreversibly destroy the function of this transporter

(Telbisz et al., 2014).

s0030 2.4. Role of lipids in MDR-ABC protein purification
and reconstitution

p0220 Solubilization, isolation, and reconstitution of large membrane proteins are

in most cases more related to “art” than to simple technologies, and this is

certainly true in the case of MDR-ABC transporters.

p0225 For the solubilization of ABCB1, certain mild detergents, e.g., octyl-

glycoside, dodecyl-maltoside (DDM Au5), or CHAPS, were optimal for pre-

serving ABCB1 activity, possibly by retaining a lipid shell around the protein

(Ambudkar, 1995; Doige, Yu, & Sharom, 1993; Orlowski et al., 1998;

Shapiro & Ling, 1995; Sharom, Yu, & Doige, 1993). Indeed, CHAPS

Comp. by: S.Anand Stage: Proof Chapter No.: 4 Title Name: ACR
Date:6/11/14 Time:18:14:32 Page Number: 109

109Complex Interaction of Lipids and ABC Multidrug Transporters

ARTICLE IN PRESS

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only
by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof
copy is the copyright property of the publisher and is confidential until formal publication.



molecules were found to be in close association with a partially purified

ABCB1 (Sharom, Yu, Chu, & Doige, 1995). DDM alone was unable to

maintain functionality, but in the presence of lipid additives (e.g., Escherichia

coli lipids) solubilization with this detergent also preserved ABCB1 activity.

p0230 In the process of solubilization and isolation of ABCG2, the choice of

detergents has been proved to be the most important factor to obtain a func-

tional transporter (Telbisz et al., 2013). Purification trials revealed a high

sensitivity of ABCG2 to total delipidation. Therefore, mild solubilization

conditions had to be applied in order to preserve a lipid shell around the sol-

ubilized ABCG2 protein. The homodimeric ABCG2 protein was even

more sensitive to detergents than ABCB1, and the addition of extra lipids

at the solubilization step was indispensable for maintaining activity

(Telbisz et al., 2014).

p0235 Reconstitution studies showed that purified ABCB1 can be functional in

several types of liposomes, composed of different phosphatidylcholine (PC)

and phosphatidylethanolamine (PE) mixtures, and the addition of choles-

terol is not required for full activity (Bucher et al., 2007; Doige et al.,

1993; Kimura, Kioka, et al., 2007; Modok, Heyward, & Callaghan,

2004). ABCB1 was active even in pure DMPE or DPPE liposomes, but

the application of PC:PE mixtures increased activity and unsaturated lipids

also had an activating role (Doige et al., 1993). The analysis of the effects of

the length of lipid side chains revealed an optimum bilayer width, and the

headgroups of the lipids were also found to be important (Sharom, 2014).

p0240 The presence of cholesterol is not necessary for purified ABCB1 activity

in liposomes (Bucher et al., 2007; Kimura, Kioka, et al., 2007), and not only

other sterols but also α-tocopherol or even DPPC caused the samemoderate

effect as cholesterol on the ABCB1 function in PC liposomes (Belli

et al., 2009).

p0245 The purified and reconstituted ABCG2 was found to be inactive in PC:

PE lipid mixtures and had low activity in an E. coli lipid extract, containing

no cholesterol. In contrast, the protein had high activity in cholesterol con-

taining natural lipid extracts, e.g., in brain lipids or in E. coli lipid extract

that was supplemented with cholesterol. The E. coli lipid extract was the

most suitable for examining the sterol dependence of ABCG2 activity,

and these experiments showed that sitosterol or ergosterol can also

activate the ABCG2 protein (Telbisz et al., 2007). In Section 4, we provide

a detailed analysis of the potential molecular interactions between sterols

and ABCG2.
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s0035 2.5. MDR-ABC transporters may actively alter the membrane
lipid environment

p0250 Since ABCB1 and ABCG2 transport hydrophobic compounds, they may

significantly modulate the composition of the plasma membrane around

their residing areas. Several publications revealed differences in the lipid

composition of parental and MDR-ABC-expressing drug-resistant cell line

pairs (Hinrichs, Klappe, & Kok, 2005; Peetla et al., 2013). ABCB1 has

indeed been shown to be capable of the outward transport of NBD labeled

or radiolabeled short PC and PE analogues (Bosch, Dunussi-Joannopoulos,

Wu, Furlong, & Croop, 1997; van Helvoort et al., 1996).

p0255 This transport in whole cells represents a lipid “floppase” activity of the

protein. In liposomes, the purified and reconstituted ABCB1 was also found

to have phospholipid and glycolipid transport activity. In liposomes con-

taining purified ABCB1 in an inverted orientation, an ATP-dependent

transport activity was found when measuring the movement of fluorescent

lipid analogues from outside to the inside of the liposomes. This lipid trans-

port activity was inhibited by ABCB1 drug substrates; thus, drug and lipid

transport activities are similar processes (Eckford & Sharom, 2005;

Romsicki & Sharom, 2001).

p0260 According to data in the literature, ABCB1 can also transport ceramides

and sphingolipids (Clay & Sharom, 2013; Coleman et al., 2013; Radeva

et al., 2005; Sharom, 2014), indicating a wide substrate specificity of ABCB1

also for lipid molecules. This lipid floppase activity can be involved in alter-

ing the cell membranes for drug distribution, thus modifying the multidrug

resistance phenotype even for drugs not directly transported by ABCB1.

A detailed characterization of the potential transport of membrane lipid

derivatives by ABCG2 has not been reported as yet.

s0040 3. EFFECTS OF LIPIDS ON THE EXPRESSION OF ABCB1
AND ABCG2: REGULATION BY NUCLEAR RECEPTORS

p0265 As discussed in the previous sections, lipids can significantly modify

the substrate handling, the ATPase activity, and the transport function of

the ABCB1 and ABCG2 proteins. In addition, an increasing body of evi-

dence suggests that cellular lipid species might also influence the expression

of these MDR-ABC transporters by regulating their gene expression via

nuclear receptors (NRs).
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s0045 3.1. The NR superfamily of transcription factors and
lipid-sensing NRs

p0270 The NR superfamily comprises 48 members in the human genome and rep-

resents the largest currently known family of transcription factors. NRs

work as ligand-activated transcription factors and affect various cellular pro-

cesses such as reproduction, development, and metabolism through regulat-

ing the expression of their target genes. Following the cloning of the first

steroid hormone receptors, the glucocorticoid (GR) and estrogen (ER)

receptors in the mid-1980s, early studies established the fundamental role

of hormone–receptor complexes in transcriptional regulation and endocrine

signaling and surprisingly also revealed the existence of several evolutionarily

related proteins all sharing a common modular structure. The three func-

tional domains shared by NRs are (i) the N-terminal ligand-independent

transactivation domain which is recognized by coactivators and/or other

transcription factors; (ii) the most highly conserved central DNA-binding

domain with two zinc-finger motifs that besides binding to DNA is also

important in NR dimerization; and (iii) the C-terminal ligand-binding

domain which also displays a ligand-induced activation function involved

in transcriptional coregulator interaction. The basic mechanism of transcrip-

tional regulation of the target genes is also shared among the NR family

members: upon ligand binding, the typically cytosolic resident NRs disso-

ciate from their partner proteins, shuttle to the nucleus, and bind to the NR

response elements (derivatives of the canonical sequence RGGTCA termed

as hormone response element where R stands for purine) of the target genes

as monomers, homodimers, or heterodimers, and by recruiting various

coactivator or corepressor complexes modulate transcriptional activity

(Chan, Hoque, & Bendayan, 2013; Evans, 2005; Evans & Mangelsdorf,

2014; Gronemeyer, Gustafsson, & Laudet, 2004).

p0275 Despite the structural similarities, the ligand sensitivity of the different

NRs shows wide variations. According to the ligand-binding specificities,

NRs can be divided into three classes: (i) steroid and endocrine receptors,

(ii) true orphan receptors, and (iii) adopted orphan receptors. Steroid and

endocrine NRs, such as the estrogen receptor (ER) or the progesterone

receptor (PR), were identified through analyzing the effect of known hor-

mones, and this class of NRs represents important mediators of endocrine

signaling. In contrast, orphan receptors have been identified through molec-

ular sequence analysis without any prior knowledge about their ligand spec-

trum, and while the ligands of true orphan receptors are still to be identified,
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adopted orphan NRs have recently been found to be involved in xenobiotic

and in lipid sensing (Chan et al., 2013; Chawla, Repa, Evans, &

Mangelsdorf, 2001; Handschin & Meyer, 2005; Klaassen & Aleksunes,

2010; Wang & LeCluyse, 2003).

p0280 The lipid-sensing adopted orphan NRs include the sterol sensor LXR

(liver X receptor), the bile acid sensor FXR (farnesoid X receptor), the fatty

acid sensor PPAR (peroxisome proliferator-activated receptor). The

xenosensors CAR (constitutive androstane receptor) and PXR/SXR (pre-

gnane X receptor/steroid xenobiotic receptor) can also interact with lipid

ligands (Chawla et al., 2001; Evans & Mangelsdorf, 2014; Handschin &

Meyer, 2005; Ory, 2004). These NRsmust heterodimerize with RXR (ret-

inoid X receptor) to exert their gene regulatory function. The aforemen-

tioned NRs have been reported to be expressed in various tissues,

including the intestine, the liver, and the central nervous system, and notably

show an overlapping tissue expression pattern with several ABC trans-

porters, including ABCB1 and ABCG2 (Chan et al., 2013; Jonker,

Stedman, Liddle, & Downes, 2009).

p0285 Lipid- and xenobiotic-sensing NRs have been implicated in the orches-

trated transcriptional regulation of enzymes and transporters involved

in lipid metabolism or detoxification and thus their action provides a coor-

dinated cellular response to perturbations affecting these processes (Fig. 3)

(Chan et al., 2013; Chawla et al., 2001; Handschin & Meyer, 2005;

Jonker et al., 2009; Ory, 2004; Urquhart, Tirona, & Kim, 2007). Profes-

sional lipid ABC transporters, such as the cholesterol and phospholipid trans-

porter ABCA1, the long-chain PC and cholesterol transporter

ABCB4 (MDR3), the bile salt transporter ABCB11 (BSEP/S-P-gp), or

the major sterol transporters ABCG5/G8 (working as an obligate

heterodimer), have indeed been shown to be regulated by lipid-sensing

NRs (Beyea et al., 2007; Jonker et al., 2009; Schmitz & Langmann,

2005; Tarling et al., 2013; van Meer et al., 2008). Interestingly, to date,

several NRs also involved in the recognition of lipid ligands have been

shown to affect the gene expression of human ABCB1 and ABCG2, the

transport functions of which are mainly involved in causing multidrug resis-

tance (Borst & Elferink, 2002; Jonker et al., 2009; Klaassen & Aleksunes,

2010; Natarajan, Xie, Baer, & Ross, 2012; Sarkadi et al., 2006; Scotto,

2003). Therefore, via binding to and activating their cognate NRs, lipid

molecules might also be directly involved in the transcriptional regulation

of both ABCB1 and ABCG2.
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s0050 3.2. Regulation of the expression of ABCB1 by NRs
p0290 Several NR response elements have been identified in the promoter of the

ABCB1 gene. The 50-upstream enhancer region of ABCB1 was shown to

contain functional PXR- and CAR-binding sites. Upon ligand binding,

both PXR and CAR were reported to induce mRNA expression of the

transporter (Burk, Arnold, Geick, Tegude, & Eichelbaum, 2005;

Cerveny et al., 2007; Geick, Eichelbaum, & Burk, 2001; Saeki, Kurose,

Hasegawa, & Tohkin, 2011; Synold, Dussault, & Forman, 2001). Regula-

tion of ABCB1 gene expression at the mRNA level was also suggested to

occur by the PXR and CAR pathways in cultures of primary human hepa-

tocytes ( Jigorel, Le Vee, Boursier-Neyret, Parmentier, & Fardel, 2006;
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Maglich et al., 2002) and also at the human blood–brain barrier (Chan,

Hoque, Cummins, & Bendayan, 2011). In contrast, in the human hepato-

cyte model cell HepG2, and also in rat liver, the lack of involvement of LXR

in the regulation of ABCB1 expression was reported (Chisaki, Kobayashi,

Itagaki, Hirano, & Iseki, 2009).

p0295 It has recently been shown that two other NRs, the thyroid hormone

receptor β (TRβ) and the vitamin D receptor (VDR), also regulate the tran-

scription of ABCB1 via binding as heterodimers with RXRα to the previ-

ously identified 50-upstream enhancer region in the ABCB1 gene promoter

(Kurose, Saeki, Tohkin, & Hasegawa, 2008; Saeki, Kurose, Tohkin, &

Hasegawa, 2008).

s0055 3.3. Regulation of the expression of ABCG2 by NRs
p0300 The promoter of ABCG2 has been reported to contain an overlapping estro-

gen response element and a progesterone response element, which were

shown to specifically bind ERα and progesterone receptor A and

B (PRA and PRB), respectively. Expression of ABCG2 was reported to

be induced by estrogen through ERα; however, enhanced expression of

ABCG2 by progesterone was observed only in model cells expressing

PRB, whereas PRA was shown to repress PRB activity (Ee et al., 2004;

Wang et al., 2008).

p0305 Three functional PPAR response elements were also identified in the

upstream enhancer region of ABCG2, and binding of the PPARγ–RXR

heterodimer to this region was reported to be involved in the direct tran-

scriptional upregulation of ABCG2 in human dendritic cells (Szatmari

et al., 2006) (Fig. 3B). Recently, another isoform, PPARα, has also been

shown to directly induce ABCG2 mRNA and protein expression through

binding to the same conserved enhancer region of the ABCG2 gene in

human brain microvessel endothelial cells (Hoque, Robillard, &

Bendayan, 2012).

p0310 In primary human hepatocytes, exposure to certain NR ligands resulted

in enhanced ABCG2 mRNA expression, strongly suggesting the regulatory

role of the PXR and CAR pathways ( Jigorel et al., 2006). In a following

study, a CAR/RXRα-binding motif in the distal promoter of ABCG2

was identified and, interestingly, ABCG2 transactivation through this motif

was found to occur via CAR but not PXR binding (Benoki, Yoshinari,

Chikada, Imai, & Yamazoe, 2012). In contrast, it has been reported that

LXR agonists do not activate the transcription of ABCG2 either in the
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human hepatocyte cell line HepG2 in vitro or in the rat liver in vivo (Chisaki

et al., 2009).

s0060 3.4. Role of NRs in lipid metabolism and a potential indirect
effect on ABCB1 and ABCG2 transporter function

p0315 As mentioned above, NRs participate in the coordinated regulation of tran-

scriptional programs which can influence overall lipid metabolism (Chawla

et al., 2001; Handschin & Meyer, 2005; Ory, 2004). As detailed in the sec-

tions above Au6, function of the membrane MDR-ABC transporters can signif-

icantly be modified by their membrane lipid environment. Therefore, it is

interesting to note that besides direct regulation of the MDR-ABC gene

transcription, NRs might also exert an indirect regulatory effect on

MDR-ABC function by modulating the levels of lipid species, such as

cholesterol, which are important in maintaining the structures of

biomembranes. According to a recent study, LXR signaling is indeed

involved in the dynamic modulation of membrane lipid composition by

promoting the incorporation of unsaturated fatty acids into phospholipids

in response to changes in cellular lipid metabolism. This LXR-mediated

phospholipid remodeling might affect the biophysical characteristics of bio-

logical membranes and thus might also be involved in the modification of

transmembrane protein function (Rong et al., 2013).

s0065 4. EXPERIMENTAL STRATEGIES TO DEFINE THE
LIPID-INTERACTING REGIONS OF THE ABCB1
AND ABCG2 PROTEINS

p0320 As discussed in Section 2, the activity of ABCB1 and ABCG2 is tightly

regulated by their lipid environment, and their function is practically insep-

arable from the presence of surrounding lipids. Still, the exact nature of this

complex protein–lipid interaction is not fully understood. Furthermore,

protein regions of ABCB1 and ABCG2 responsible for direct interaction

with lipids are not properly mapped, although in recent years numerous

studies have dealt with this question. The main strategies applied in order

to identify the lipid “sensor” regions include site directed mutagenesis of

the transporters, measurements of direct binding of lipids to the proteins,

and molecular dynamics (MD) simulations. In this section, we summarize

the data regarding lipid-sensing regions of ABCB1 and ABCG2 determined

by these techniques.
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p0325 One of the strategies to explore the potential interaction of predicted

proteinmotifs with selected lipids is the alteration of amino acids of the given

region by site-directed mutagenesis. One drawback of this method is that find-

ing the lipid-binding consensus sequences defined by linear peptide

sequences in large proteins is inherently difficult. Still, a systematic, non-

biased mutagenesis approach may circumvent this problem (see below

and Loo, Bartlett, & Clarke, 2009), and also the atomic level structural data

will greatly promote the determination of the lipid-sensing structural pat-

terns. The other limitation of the site directed mutagenesis-based approach

is the difficulty to distinguish between a mutation directly inactivating the

protein, e.g., altering the transport or ATP hydrolytic activity and one selec-

tively altering the cholesterol/lipid sensitivity of the transporter. This uncer-

tainty is caused by the fact that the functions of ABCB1 and ABCG2 are

inseparable from their lipid environment, and there are practically no assays

capable of distinguishing between the aforementioned two phenotypes.

Direct binding studiesmeasuring the interaction between lipids and ABC pro-

teins may provide an independent approach to avoid these problems. How-

ever, as lipids tend to bind to hydrophobic surfaces due to their hydrophobic

nature, this approach necessitates purified ABC proteins and well-chosen

controls to separate specific lipid binding from simple hydrophobic interac-

tions (“sticking”). A detailed description of structural studies-based molecular

simulations for examining MDR-ABC transporter and lipid interactions is

discussed in Section 5.

s0070 4.1. Lipid sensing by the ABCB1 protein
s0075 4.1.1 Mutagenesis studies in ABCB1
p0330 The lipid sensing of ABCB1 has been extensively investigated by mutagen-

esis studies targeting potential amino acids involved in ABCB1–lipid inter-

actions. Since ABCB1 is involved in the transport of lipids and lipid

derivatives (see Section 2), some lipids and related substrates or inhibitors

most probably share the substrate-binding pocket. On the other hand, lipids,

which display modulatory effects and alter function and localization inde-

pendently from substrate binding, most probably interact with the trans-

porter at a different binding site defined by membrane facing amino

acids. Here, we summarize the known lipid-sensing positions in ABCB1

identified by site-directed mutagenesis demonstrating both types of

interactions.

p0335 It has been shown that AdaGb3 (adamantyl globotriaosylceramide), a

water-soluble ganglioside analogue, inhibits ABCB1-mediated vinblastine
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efflux, indicating that the lipid-binding site interferes with substrate binding

(De Rosa et al., 2008). ABCB1 partially colocalizes with

globotriaosylceramide at the cell surface, and glycosphingolipid depletion

results in a decreased cell surface expression of ABCB1, indicating that gan-

gliosides also influence the trafficking of this protein. In order to identify the

positions of the large substrate-binding pocket influencing the binding of

this globotriaosylceramide analogue, De Rosa et al. (2008) introduced cys-

teine pairs into several positions (F343C in TM6, in combination with

F728C in TM7, or Q725C in TM7; and L339C in TM6 with F728C in

TM7) previously demonstrated to be involved in substrate binding (Loo,

Bartlett, & Clarke, 2006). If cross-linking could not be observed between

the two cysteines in the presence of the lipid, then lipid binding at least

to one of the specific amino acid positions was concluded. By applying this

strategy, the authors identified L339C in TM6 to be responsible for AdaGb3

binding.

p0340 With regard to amino acids interacting with the lipid environment but

not involved in direct lipid transport, more extensive data are available. Loo

and Clarke performed numerous studies in order to define amino acids fac-

ing the membrane phase, thus interacting with the lipid environment. In

these studies, a construct with the G251V mutation, causing protein insta-

bility and improper maturation (processing mutant), was used in combina-

tion with Arg mutations in transmembrane helices (Loo, Bartlett, & Clarke,

2008; Loo et al., 2009; Loo & Clarke, 2013). As a result, some “corrector”

mutations rescued the processing mutant G251V by promoting its proper

folding by Loo et al. (2008). The authors hypothesized that when the

inserted Arg faces the lipid interface, the rescue fails because of the intoler-

ability of the positive charge in the hydrophobic environment (see Fig. 4).

Based on the same rationale, Loo and Clarke also performed a large scale

mutagenesis study in which arginines were introduced along all potential

transmembrane helices in ABCB1 (Loo et al., 2009). By using the same

technique, Loo and Clarke also replaced all amino acids found in TM helices

5 and 9. Most of the amino acids identified in their study fit well to the 3D

model built based on the crystal structure of Sav1866; namely these side

chains are looking toward the membrane phase (see Fig. 4). However, some

of the positions identified as lipid-interacting amino acids direct their side

chains toward the substrate-binding cavity and not toward the bilayer

(e.g., in TM10 and 11). One possible explanation for this is that data

obtained from the crystal structure represent only a snapshot; however dur-

ing the catalytic cycle, the protein undergoes major conformational changes
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during which the side chains of the lipid interacting amino acid can face the

membrane phase.

p0345 Recently, relatively detailed atomic level crystal structures have become

available for the homologues of human ABCB1, the Caenorhabditis elegans,

and the mouse Abcb1 proteins (Aller et al., 2009; Jin, Oldham, Zhang, &

Chen, 2012). Thus, proper localization of the amino acids within and out-

side the transmembrane helices can be estimated. Therefore, it can be

expected that these structural data will greatly promote the assignment of

additional lipid-sensing amino acid positions that can be further verified

by site-directed mutagenesis studies.

s0080 4.1.2 Direct binding of lipids and MD simulations on ABCB1
p0350 As discussed above, measurement of lipid binding to the ABCB1 protein can

provide direct data about the protein regions involved in lipid interaction

independently of the substrate transport function. Moreover, lipids inter-

acting with ABCB1 can also be identified by combining lipid binding with
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f0020 Figure 4f0020 Amino acids in ABCB1, facing the lipid interface. The upper view (A) and side
view (B) of the model of the ABCB1 protein created based on the structure of
Sav1866 (Globisch, Pajeva, & Wiese, 2008). Lipid-facing amino acids identified by muta-
genesis studies are indicated by red color (for details see text). Figure is based on Loo
et al. (2009).
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mass spectrometry as demonstrated by Marcoux et al. (2013). They used

purified mouse Abcb1 in a detergent (n-dodecyl-β-D-maltoside—DDM)

containing buffer and analyzed direct lipid binding to Abcb1 and then deter-

mined the bound lipids by mass spectrometry. In this study, three cardiolipin

molecules were found bound to the substrate-binding cavity of Abcb1, and

by related calculations, the size and number of lipids present simultaneously

in the substrate-binding pocket were also determined (Marcoux et al.,

2013). As a further expansion of this study,Marcoux et al. performedmolec-

ular docking in which they showed that cardiolipin-14 binds to K230 and

K822 found in transmembrane helices TM4 and 9 previously shown to be

involved in lipid sensing (see Section 4.1.1).

p0355 The other type of lipids investigated for direct binding to ABCB1 was

cholesterol. Kimura, Kioka, et al. (2007) have shown that cholesterol can

directly bind to purified ABCB1. Additionally, they have systematically ana-

lyzed the effect of cholesterol on the ATP hydrolytic activity of ABCB1.

Cholesterol was observed to activate ATP hydrolysis differently, depending

on the size of the investigated substrate as we discussed earlier. In the case of

small transported molecules (molecular mass below 800 Da), cholesterol

stimulated the ABCB1-ATPase, while cholesterol had no effect on the

ATPase activity in the presence of larger substrates. In the former case, cho-

lesterol altered the substrate KM values, indicating that this lipid directly

interacts with the substrate-binding sites. Based on the alternative effects

of cholesterol on ABCB1 function, the authors devised a cholesterol fill-

in model (see Fig. 5A and B and Kimura, Kodan, et al., 2007), suggesting

that in the case of smaller transported substrates (Fig. 5A), cholesterol can

be present in the cavity simultaneously with the substrate and can promote

the entrance and/or exit of substrate molecules, while in the case of larger

substrates there is no space for cholesterol (Fig. 5B). Later, in the crystal

structure of C. elegans Abcb1 two molecules of a lipid-like substance

(n-undecyl-β-maltoside) were found to be located inside the drug-binding

cavity ( Jin et al., 2012) confirming that lipids can enter the substrate-binding

pocket.

p0360 Besides experimental data, in silico modeling can also be used to deter-

mine protein–lipid interactions. In the case of ABCB1, Wen, Verhalen,

Wilkens, McHaourab, and Tajkhorshid (2013) performed MD simulations.

According to their results, the lipid enters between TM3, 4, and 6 and inter-

acts with Leu-300, Ala-302, Tyr-303, and Ala-338, previously shown to be

involved in drug binding (for details see Section 5).
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s0085 4.2. Lipid sensing by the ABCG2 protein
p0365 In the case of ABCG2, literature for its interaction with lipids is far more

incomplete than in the case of ABCB1. Since no atomic level crystal struc-

ture is available for any closely related ABCG-type proteins, the localization

of amino acids in the transmembrane helices cannot be properly estimated.

The homology models constructed on the basis of unrelated ABC trans-

porters (Hazai & Bikadi, 2008; Li et al., 2007) are contradictory and cannot

be properly applied for devising site-directed mutagenesis.

p0370 Still, information obtained by site-directed mutagenesis and related to

potential lipid sensors and lipid-binding sites in ABCG2 is already available

regarding the interaction of cholesterol and some sterol compounds with the

transporter. As described in Section 2, cholesterol and bile acids have signif-

icant roles in ABCG2 function: ABCG2 is practically inactive in the absence

of cholesterol, while bile acids selectively modulate the basal ATPase activity

of the transporter. In this section, we list the amino acid regions examined in

detail for such sterol interactions.
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f0025 Figure 5f0025 Cholesterol fill-in model for ABCB1 function. In the case of small compounds (A),
cholesterol promotes the transport by filling the substrate-binding pocket, while in the
case of larger substrates (B), the compound itself fills the cavity. Figure is based on the
model of Kimura, Kodan, et al. (2007).
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s0090 4.2.1 Role of the R482 position
p0375 It turned out very early, practically at the cloning of ABCG2 that R482 is a

crucial determinant of substrate recognitionofABCG2. In these early studies,

it was found that amutation ofR482 toGor T occurred in the cell lines upon

anthracycline selection, most probably because these “artificial” (not occur-

ring in vivo) mutant ABCG2 variants results in a “gain-of-function” trans-

porter with increased doxorubicin and rhodamine 123 transport activity

(Chen et al., 2003; Honjo et al., 2001; Miwa et al., 2003; Ozvegy,

Varadi, & Sarkadi, 2002). Later it turned out that amino acid 482 is also

involved in the cholesterol and bile acid sensing of the protein. Interestingly,

Telbisz et al. (2007) found that in contrast to the wild-type protein, the

R482Gmutant is fully active in Sf9 insectmembrane vesicles containing only

low levels of cholesterol (see Section 2). Therefore, ABCG2-R482G seemed

to function in a cholesterol-independent way. Surprisingly, when the iso-

lated, purified, and reconstituted ABCG2-R482Gmutant was characterized

in proteoliposomes, providing a well-controlled lipid environment, it was

found that this mutant also required cholesterol for its activity. Moreover,

themutant variant had an increased cholesterol affinity, that is themutant var-

iant was fully active at much lower cholesterol concentrations in the

proteoliposomes than that required for the wild-type protein (see Fig. 6A

and Telbisz et al., 2013). This finding explained the apparent cholesterol

insensitivity of the R482 mutant in the Sf9membranes, which contain only

low level of sterols thatwere already sufficient toprovide fullABCG2activity.

p0380 Recently, amino acid position 482 was further analyzed in detail with

regard to its influence on the cholesterol-sensing of ABCG2 (Telbisz

et al., 2014). In their study, Telbisz et al. found that replacement of

R482 to smaller amino acids (D, N, S, and T) resulted in a cholesterol-

independent behavior of these mutant proteins in Sf9 insect membranes.

In contrast, larger size amino acids (I, K, M, and Y) produced similar cho-

lesterol sensitivity as the wild-type protein. However and surprisingly, the

wild-type protein proved to be unique in regard with its modulation by bile

acids. All R482 mutants, even those with larger amino acid side chains,

behaved differently from the wild-type transporter (Fig. 6B).

s0095 4.2.2 Role of the LxxL motif
p0385 In several sterol-binding proteins (e.g., progesterone, androgen, estrogen, or

glucocorticoid receptors and oxysterol-binding protein-related proteins), an

LxxLxxL motif (x standing for any amino acid) was identified as a

steroid-binding element (Im, Raychaudhuri, Prinz, & Hurley, 2005;
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f0030 Figure 6f0030 Different positions involved in the sterol-sensing of ABCG2. (A) The R482G
mutant is fully active at lower cholesterol levels. ATPase activity measurement in puri-
fied ABCG2 (wild type and the R482G mutant) reconstituted in proteoliposomes
providesAu8 an excellent tool to investigate ABCG2 activity in a well-controlled lipid envi-
ronment. This experiment shows that in the case of the R482G mutant, both the basal
and the substrate (quercetin)-stimulated ATPase activities are more sensitive to choles-
terol than those of the wild-type protein (Telbisz et al., 2013). (B) The bile-acid modu-
lation of wild-type ABCG2 is unique. In Sf9 insect membranes containing wtABCG2
(R482), the relative substrate stimulation of the ATPase activity is significantly higher
in the presence of bile acids. When R482 is mutated, the effect of bile acids is greatly
decreased.

(Continued)
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Williams & Sigler, 1998). Although this is a relatively nonconserved

sequence, in ABCG2, only a shorter LxxL motif (amino acids 555–558)

can be found (Fig. 6C), which has been examined in detail as a potential lipid

interactive or sensor region.

p0390 Velamakanni, Janvilisri, Shahi, andvanVeen(2008) by expressing ABCG2

in L. lactis found that the L555A/L558A mutant loses its progesterone and

estradiol recognition capacity. In another study, Telbisz et al. (2014)

observed that in Sf9 membranes the L555A and L558A mutants behaved

in a cholesterol-independent manner. However, in proteoliposomes, the

L558A mutant also required cholesterol for its ATPase activity. Unfortu-

nately, the L555A/L558A mutant could not be investigated in its purified

and reconstituted form because an inactivation due to loss of dimerization

occurred during purification. This latter observation may indicate that cho-

lesterol promotes proper membrane insertion and the formation of the

ABCG2 homodimer, and the double mutant becomes nonfunctional

because of the loss of lipid sensing in this protein region.
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f0030 Figure 6—Cont'dca0030 (C) Positions of amino acids involved in sterol sensing of ABCG2. The
topology of ABCG2 has been determined using HMMTOP (Tusnady & Simon, 2001) and
drawn by using http://emboss.bioinformatics.nl/cgi-bin/emboss/topo. Amino acids
involved in lipid sensing are indicated. Panel (B): Adapted from Telbisz et al. (2014).

124 Csilla Heged€us et al.

ARTICLE IN PRESS

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only
by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof
copy is the copyright property of the publisher and is confidential until formal publication.



s0100 4.2.3 Role of the CRAC motif
p0395 Several conserved motifs have already been experimentally shown to be

involved in cholesterol sensing in “professional” cholesterol-binding

proteins. These motifs include the sterol-sensing domain comprising five

transmembrane helices, the YIYF sequence, the CRAC (cholesterol

recognition amino acid consensus), and the CARC (“inverted” CRAC)

motifs (Baier, Fantini, & Barrantes, 2011; Epand, 2006). In the case of

ABCG2, the potential role of the CRAC motif (L/V-X1–5-Y-X1–5-R/

K, X standing for any amino acid) has recently been analyzed in detail by

site-directed mutagenesis (Gál et al., 2014). In this work, the central, con-

served tyrosines were mutated in five potential CRAC motifs in ABCG2,

and the effects of single mutants on the cholesterol-sensing capability of

ABCG2were analyzed. Interestingly, it was found that three of the five posi-

tions analyzed were important in proper protein folding, while Y413 found

in the predicted TMhelix 1 (Fig. 6C) caused increased cholesterol sensitivity

of the protein.

p0400 As a conclusion, mutagenesis studies performed on ABCG2 provided

variable results, and in some cases, the opposite effect was observed to what

was expected. Both the R482G and the Y413S mutants which were

expected to eliminate sterol binding actually increased the apparent affinity

of the transporter for cholesterol. The experimental examination of the

CRAC motifs also provided only incomplete information; thus, additional

studies are required to map the lipid interacting parts of ABCG2. Until now,

no direct lipid-binding experiments have been performed in the case of this

transporter.

s0105 5. IN SILICOMODELING OF THE LIPID INTERACTIONS OF
ABCB1 AND ABCG2

p0405 Experimental atomic level exploration of the lipid–protein interac-

tions is challenging. Various spectroscopic methods, including NMR and

ESR, have been employed to study these interactions, but provided infor-

mation mostly on average orientational order (Marsh & Pali, 2013). Crystal

structures of membrane proteins obtained by X-ray crystallography in

numerous cases contain associated lipid molecules. However, the orienta-

tion and conformation of the lipids in the crystals are indicated to be different

from that in a lipid bilayer (Marsh & Pali, 2013). As alternative methodol-

ogies, computational approaches can be applied to describe lipid–protein

interactions at the atomic level.
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p0410 All the computational methods discussed here, such as MD simulation or

in silico docking, require high-resolution 3D structure of the protein under

investigation. While murine Abcb1 has been crystallized in an apo state

(Aller et al., 2009), and sufficient homology models can be built for its

ATP-bound conformation (Globisch et al., 2008; O’Mara & Tieleman,

2007; Pajeva, Globisch, & Wiese, 2009), structural or homology models of

humanABCG2are insufficient for in silico studies becauseof the low-resolution

structure information (cryoelectron microscopy, >5 Å) (Rosenberg et al.,

2010) and the very low (<20%) sequence similarity of the TMD with any

existing ABC structure that could be applied as a possible template.

s0110 5.1. MD simulation
p0415 MD computer simulations attempt to describe the time-dependent move-

ments and interactions of the atoms in the examined protein and its close

environment by numerically solving the equations of molecular mechanics

force fields. Thus, MD simulations for a transmembrane protein in a lipid

bilayer may be suitable to describe conformational changes within the pro-

tein and the movements of the lipids around the protein (Tieleman et al.,

2006). When a lipid molecule interacts with a specific region of the protein,

it “sticks” there and usually interacts with specific amino acids for the

remaining part of the simulation. However, the timescale of the MD sim-

ulations with a large system containing all atoms of all relevant molecules is

highly limited, and the association of a lipid with a specific region of the pro-

tein is a relatively rare event.

p0420 Wen et al. (2013) have performed MD simulations using the mouse

Abcb1 (P-gp) structure (PDB:3G5U) in the apo conformation, with the

NBDs apart. Since the dynamics and lipid interactions in the simulations

may be affected by the initial lipid contacts of the protein, they have gen-

erated four different systems with the protein differently embedded in a

bilayer built from POPE, for parallel simulations. In the case of one of

the four systems, in 50-ns long simulations, the protrusion of a lipid mole-

cule into the cleft between TM4 and 6 could be observed. These TM helices

delineate the putative drug entry site into the central cavity of the protein

(Aller et al., 2009). As ABCB1 has been indicated to possess lipid transport

activity and its drug substrates are hydrophobic, this protrusion event has

been suggested to be equivalent with the initial steps of drug binding.

p0425 To overcome the limitation of the simulation time scale, coarse-grained

(CG) models can be applied to simplify the system under investigation

(Ding, Buldyrev, & Dokholyan, 2005; Klein & Shinoda, 2008;
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Marrink & Tieleman, 2013). In the case of CG models, several atoms are

represented by a single bead (virtual atom) in a way to preserve the topology

and physicochemical properties of the coarse-grained molecule. As an

example, the most widely used MARTINI model (Marrink & Tieleman,

2013), on average maps four heavy atoms and associated hydrogens to a sin-

gle interaction center. In addition, four main interaction types are defined,

such as apolar, nonpolar, polar, and charged. As an example, four water mol-

ecules can be mapped to one CG water bead, and one ion is mapped to a

charged bead that also represents the first hydration shell. However, this type

of mapping is insufficient for describing complex chemical entities, includ-

ing ring-like structures. When a higher resolution mapping is applied, the

force fields of the CG models to describe the interactions between the beads

are parametrized in a systematic way: (1) nonbonded interactions are tuned

to reproduce experimental partitioning free energies between polar and

apolar phases of various chemical compounds, and (2) bonded interactions

are defined and calculated by using reference all-atom simulations.

p0430 A prominent example to decipher lipid–protein interaction by

employing CGMDs has been provided by Schmidt et al., studying the pho-

sphatidylinositol 4,5-bisphosphate (PIP2) binding to the Kir2.2 inwardly

rectifying potassium channel (Schmidt, Stansfeld, Tucker, & Sansom,

2013). At the first stage, they performed coarse-grained simulations with

Kir2.2 and PIP2 placed in a distance from each other in a bilayer. These sim-

ulations and events at this level are sufficiently fast to observe PIP2 diffusion

and association with the potassium channel. At the second stage, the simpli-

fied model of the associated complex and bilayer was converted to all-atom

model for simulations with higher accuracy. Their results, when compared

to experimental data, suggest that multiscale approaches involving coarse-

grained models may properly describe protein–lipid interactions, thus could

be also applied to investigate ABC protein and lipid interactions.

s0115 5.2. In silico docking
p0435 A different approach to study molecular interactions is in silico docking of

small molecules to target proteins. In this case, the protein is usually handled

as a rigid molecule, in contrast to the small molecule that is allowed to rotate

at its bonds. However, docking of lipids is challenging because of their high

rotational freedom (bonds of the hydrophobic chains), that impair the per-

formance of most docking algorithms. Docking of ligands with high number

of atoms is often prohibited even in commercial software. Moreover, the

location of the docking, namely the volume of the search place, is also
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limited and requires a priori knowledge about the binding site. A recently

developed free tool, Autodock Vina (Trott &Olson, 2010), can handle flex-

ible molecules with high number of rotatable bonds and allows to perform

docking in short time with no serious restrictions on putative binding

locations.

p0440 In a recent study, binding of drugs and cardiolipins with different sizes to

the ABCB1 protein has been investigated by using mass spectrometry and

molecular docking (Marcoux et al., 2013). Importantly, the computational

and experimental results were concordant, and the presence of two mole-

cules of the smaller cardiolipin CL14 or only one molecule of the larger

CL24 was indicated in the internal binding pocket of ABCB1. The docking

of the ligands was performed in two steps: (1) simulation with Patchdock

(Schneidman-Duhovny, Inbar, Nussinov, & Wolfson, 2005), employing

a shape complementary criteria; (2) accurate refinement of the orientation

of side chain and ligand atoms, using FireDock (Mashiach, Schneidman-

Duhovny, Andrusier, Nussinov, & Wolfson, 2008).

p0445 As a summary, application of computational methods for studying

lipid–protein interactions is relatively sparse, because of the limitation of the

available tools and the experimental difficulties that make it challenging to

correlate theoretical and experimental results. However, for resolving several

questions, at the atomic level, currently only the in silicomethods are available.

Careful application of these approaches may provide valuable information on

the effects of lipids on MDR-ABC protein stability and conformation.

s0120 6. CONCLUSIONS

p0450 ABCB1 and ABCG2 are two major plasma membrane ABC

multidrug transporters (MDR-ABC) involved in cancer chemotherapy

resistance; thus, the exploration of their mechanism of action has a major

therapeutic consequence. Both ABCB1 and ABCG2 are significantly mod-

ulated by various lipid compounds, especially those residing in the plasma

membrane in their close proximity. In this chapter, we discuss the complex

interactions of ABCB1 and ABCG2 with a variety of lipid molecules, focus-

ing on the role of cholesterol and cholesterol derivatives. We demonstrate

that lipids may affect MDR-ABC function at the transcriptional level,

mainly by interacting with NRs. We also discuss lipid regulation of the

MDR-ABC transporters at the posttranslational level and explore the

molecular details of the direct transporter–lipid interactions, the exploration

of potential lipid-sensor domains. Interestingly, these MDR-ABC proteins
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may also directly influence the general membrane composition, by

“flopping” membrane lipid constituents. The further application of exper-

imental site-directed mutagenesis, detailed structural studies, and in silico

modeling should allow a more detailed understanding of the lipid interac-

tions with these medically important MDR-ABC transporters.
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